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Foreword 

The following paper is the final report in fulfillment of the requirements for 

the undergraduate design sequence in aerospace engineering, AE 441-442. It is the 

culmination of nine months of work completed by Group W on its design for a 

manned orbital transfer vehicle. 

Even though Group W did not work on a project for the AIAA design 

competition, we did attempt to present a proposal that would meet the 

requirements of the competition if a request for proposal had been made for our 

design. This meant that we needed not only to design an OTV but to address 

such concerns as costs, manufacturing, and management. 

For this reason, the paper is written to be a proposal from an aerospace 

WWSR Inc. was created to be this corporation that is to be presented to NASA. 

fictious corporation. 

similiarities to an actual corporation is purely coincidential. 

WWSR is a composite of many aerospace corporations. Any 
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Introduction 

Since the. late 1970s to early 1980s, there has been considerable research into 

the deployment of an American space station. The proposed Space Station will 

allow for a permament manned settlement in space. It will also permit numerous 

spaced-based missions that may not have been practical in the past. One of these 

missions is the deployment of an orbital transfer vehicle (OTV). The purpose of 

an OTV is to make excursions from one orbit to another. More specifically, it is 

to be capable of going into higher Earth orbits than the Space Shuttle. There is 

also a major difference between an OTV and its counterpart the orbital 

maneuvering vehicle (OMV) in that an OMV is only designed for orbit changes of 

a few hundred miles while the OTV is designed for orbit changes of thousands of 

miles. For the most part, current OTVs have been designed to be able to go, at 

the very least, from Low Earth Orbit (LEO) to a geostationary orbit (GEO). 

NASA has been investigating several proposals from other areospace firms for 

OTVs. A few proposed OTVs have been ground-based, but most have been 

designed to be permamently based at the Space Station. 

In Pioneering the Space Frontier: The Report of the National Commission 

on Space, the Commission states that: 

A high priority exists for this vehicle [an OTV], which will greatly lower 
the cost of access to geostationary orbit and to the Moon for crews and 
payloads ranging from 10 to 20 tons. The transfer vehicle will be 
modular, single-stage, fueled by liquid oxygen and liquid hydrogen, and 
outfitted with an aerobrake to conserve fuel by allowing the vehicle to 
slow down through the drag of Earth’s atmosphere ... With appropriate 
modification the transfer vehicle could be used as a lunar lander [l, p. 
1221. 

In response to the need for an OTV expressed in the report, WWSR has 

created a proposal for a manned OTV that meets the criteria selected by the 

Commission. The design that WWSR is proposing will also meet the following 

criteria: 

8 



1. Be based at the Space Station. 

e 

2. Have the capability of supporting 3 people for a mission lasting no 
longer than 14 days. 

3. Be able ' to  perform multiple missions between LEO and GEO with a 
minimum amount of servicing. 

4. Carry a maximum payload of 24,000 pounds between LEO and GEO. 

5 .  Support EVA. 

The primary mission of the OTV is to support manned excursions to GEO to 

service a satellite in orbit without needing to return it to the Space Station or to 

Earth. WWSR realizes, however, that it may not be possible due to some unique 

failure of a satellite to repair it at GEO. For this reason, the OTV has been 

designed to be capable of bringing the satellite back to the Space Station. It is 

also capable of returning the same (or another) satellite to GEO. This eliminates 

unnecessary missions to GEO by other payload delivery systems (such as the PAM 
Centaur). 

WWSR has based its design on a "worst case" scenario. This scenario is a 

mission that consists of the following: 

1. Leaving the Space Station, going to GEO, and returning. 

2. Carrying a 24,000 pound payload to GEO. 

3. Carrying a full crew of 3. 

4. Lasting for 14 days. 

This worst case scenario may never be realized within in the first few years of 

deployment. One reason is that current satellites rarely weigh over 10,000 lbm. 

Another reason is that if the mission is simply to repair a satellite, it is highly 

unlikely that a crew of three will be required or that they will need 14 days to 

complete the mission. However, the Project Orion team has designed its OTV in 

anticipation of future missions. NASA is quite intent on creating other platforms 

in addition to the Space Station based at LEO. Our OTV will be used to realize 

9 
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this goal. It has been designed to be capable of transporting the heayy 

components of a platform without being unsuitable for its primary mission of 

satellite repair. It has been designed to support a three person crew for a duration 

of time that will allow them to work on assembling the platform. Other missions 

that may be possible because of the constraints of our worst case scenario will be 

manned missions to the Moon. longer duration missions (with lighter payload 

requirements). higher orbit missons. or missions with more personnel (this would be 

accomplished by adding an additional crew module). 

Figure 1-1: . in arrist’s rendition of an OTI -  similiar to 
\Y\I-SR * c  proposed design. 

.source: Pion e c riri g thc S p a c e  Frontir r 
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With the aforementioned criteria and worst case scenario, the Project Orion 

team embarked on its design process. The goal of the team is to create an OTV 

that will maximize performance by using the most up to date technologies. Project 

Orion will not- use systems that have not been fully proven. It is the general 

philosophy of the team that it is better to stick with “tried and true” methods 

than risk the vehicle or the crew in order to cut costs. We also feel that using 

proven state-of-the-art systems will actually cut costs in the long run. One major 

abberation of this philosophy may be the use of an aerobrake. Early in our 

decision process, we selected the aerobrake as our choice for slowing down the OTV 

on its return to LEO. It is not a totally proven system, but it has been 

substantially investigated by WWSR and other companies and has shown to be 

highly feasible. Even so, our choice for an aerobrake is similar to the method used 

successfully for the Apollo missions. 

The following chapters of this report consist of Project Orion’s design for the 

OTV and its subsystems. This design has been chosen after eight months of 

investigation. Other designs for OTVs that use electrical, solar, or nuclear power 

may be more efficient. We feel, however, that our design is the most optimal 

possible to meet the National Commission on Space’s demand for a chemically- 

powered, aerobraked, manned OTV as well as the design scenario selected by 

WWSR and MOVERS. 

e 
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Chapter 1 

Design of the OTV 

The final design of the OTV involved the integration of many different 

systems. The main design parameter was the aerobrake, after that the propellant 

tanks, and then the cargo, and crew module areas. 

The aerobrake is the most important part of the design. The the type of 

shield that was selected is called a raked sphere cone lifting brake. This shape was 

chosen so that maximum propellant savings would be obtained during the return 

trip to the Space Station. The brake will be shipped up tho the Space Station via 

the Space Shuttle. It will assembled and attached to the OTV at the station. The 

brake will be made of numerous sections each of which will be small enough to fit 

in the Space Shuttle cargo bay. The aerobrake is covered in more detail in 

Chapter 2 of this report. 

The design of the propellant tanks was chosen with ease of construction and 

delivery in mind. The propellant tanks are modular and consist of two tanks (LH2 

and L 0 2 ) ,  the required support .structure, and piping. The tank modules will be 

built on Earth and flown up empty on the Space Shuttle. The tanks will then be 

moved to the OTV area of the Space Station for integration to the OTV. The 

tank modules are designed to be identical and interchangable. The OTV has been 
designed to carry anywhere from two to six sets of tanks depending on the mission. 

These tanks are attached radially around the central command module. The tanks 

are put into place by cranes in the OTV servicing area. The fuel lines and 

diagonal supports are connected by attending astronauts. The modular design 

shortens the time needed for servicing the OTV, thus reducing costs. 

Since the OTV has to travel in space as well as through a portion of the 

atmosphere. the placement and design of the crew command module (CCM), EV-4 

module (EVAM), and cargo area are very important. The semi-spherical design of 

the aerobrake made it necessary to put the manned portions of the craft along the 

central axis. The interior components needed to positioned as symmetrically as 

12 



possible to ensure the center of gravity was near the central axis. The central 

location of the manned portions also means that this area will be better protected 

from the atmospheric heating during the aerobraking maneuver. The area 

protected by the aerobrake will form a cone above the brake. In order to keep the 

components of the OTV as well as its payload within this cone of protection meant 

that the central structure must be narrow but not excessively tall. 

The CCM and EVAM are designed to be transported in the shuttle cargo 

bay. The CCM contains all 

of the supplies, perishables, computers, controls, and facilities needed for a 14 day 

mission. Interior components of the CCM are broken down into hexagonal sections 

that fit within the circular cross section of the main pressure walls. The galley, 

shower, and head are in the extreme rear of the CCM. The computers and 

avionics are placed in front of these sections so that they are closest to the cockpit 

area. The life support, electrical power, and air revitalization systems are located 

in modules place in the "floor" and "ceiling." Unlike the rest of the CCM, the 

cockpit area maximizes space by returning the circular cross section. The two 

pilot's seats are located side by side facing forward. The controls are placed in a 

manner similiar to that of the Space Shuttle's cockpit. Below the cockpit is the 

hatch to the EVAM. The third crew member will have a seat underneath and 

behind the cockpit such that he would be facing the hatch to the EVAM. This 

seat will fold up when not in use. The area then can be used to prepare for 
entering the EVAM. 

The CCM is 22 ft in length and 12 ft in diameter. 

The EVAM is where the MMU, equipment, and tools for satellite repair will 

be stored. The EVAM contains an airlock that will be used to transfer between 

space. EVAM, and CCM. The rest of EVAM will be normally left evacuated. 

Outside the EVAM is the robot arm that will be used to grapple satellites and 

.MMUs. The main EVA hatch will also double as the hard docking hatch when 

the OTV is at the Space Station. The EVAM can be detached from the CCM. 

This allows the versatility of adding any sort of module such as another crew 

module or space laboratory that might be needed for a given mission. The EVAM 

is is 8 ft  in length and 10.5 ft in diameter. 

13 
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The engines are placed centrally for several reasons. the most important. of 

which is stability. The engines' center of thrust will be in line with the center of 

gravity of the whole OTI'. The central placement will also reduce the number of 

lines needed from the propellant tanks and simplify servicing the OTI'. Two 

engines acting redundantly were chosen over one main engine since this provided 

for a safer and more reliable system. 

. '. .-. \ 

\ 

1-1: Detailed Drawing of I171YSR's OTI-  
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1-2: General Configuration of WWSR’s OTV (Side View) 
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1-3: General Configuration of WWSR’s OTV (Front View) 

16 



I 

I 

1-4: General Configuration of WWSR’s OTV (Top View) 
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1-1 AIRLOCK HATCH 

1-6: View of Cockpit as Seen from Interior 

1-7: View of Interior from Cockpit 

ACCESSWAY 
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1-8: Diagram of CCM & EVAM (Side View) 
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1-9: Diagram of CCM & EVAM (Top View) 
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The Aerobraking Maneuver 

The WWSR OTV was designed to carry large payloads to geosynchronous 

orbits. In order to maximize the weight of this payload F 

of fuel needed low, the OTV will use the drag produced 

Earth’s atmosphere to dissipate its excess velocity as 

Aerobraking, as this process is called, results in a 

propulsively slowing the craft using retrorockets. In fact, 

hile keeping the amount 

by passing through the 

it returns from GEO. 

arge fuel savings over 

it has been shown that 

an aerobraking OTV can carry twice the roundtrip payload to GEO as a similiarly 

configured all-propulsive craft [ 121. Aerobraking is, however, a very complex 

maneuver, creating many important vehicle design considerations. As the vehicle 

passes through the atmosphere it experiences severe aerodynamic heating, requiring 

the added complexity of a thermal protection system. Additionally, since the craft 

is essentially flying, aerodynamic configuration and control become prime design 

criteria. 

The aerobraking maneuver is initiated at GEO where the OTV’s engines are 

fired to produce the necessary plane change and inject the vehicle into a transfer 
trajectory that will take it into Earth’s atmosphere. For most WWSR OTV 

missions (no returning payload), aerobraking will be performed in two passes 

through the atmosphere. A schematic diagram of a two pass maneuver, as 

compared to a one pass, is shown in Figure 2-1 [lo]. The first pass will last only 

5 minutes and will take the OTV to within 85 kilometers of the Earth’s surface. 

The deceleration of the vehicle due to the drag on the aerobrake will place it in a 

intermediate orbit with an apogee midway between LEO and GEO. Slight 

corrections in this orbit will take the OTV through the atmosphere for a second 

time, at approximately the same altitude but for 11 minutes (due to the already 

reduced velocity of the OTV). This pass will place the craft in an orbit that can 

be circularized at LEO with a relatively small propulsive burn (less than 200 m/s 

delta-v). 
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GEOSYNCHRONOUS 
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AEROBRAKING 
REN DE Z V O U J  

AEROBRAKING ORBIT 
Cowparison of AOTV trajectories. 

Figure 2-1: Schematic drawing of a one and two pass 
aerobraking maneuver. 

The altitude and velocity of an unloaded (nominal return configuration) 

WWSR OTV versus the time into the aerobraking maneuver are shown in Figures 

2-2 & 2-3, respectively. As can be seen, the first pass is a quick dip into the 

atmosphere that reduces the OTV’s excess velocity by approximately 730 meters 

per second. The second pass takes the OTV down into the atmosphere almost as 

quickly as the first. However, because of the reduced velocity of the OTV the 

time for the vehicle to climb out of the atmosphere is much longer. It is during 

this climb out period that the major portion of the velocity decrease due to 

aerobraking occurs. This second pass reduces the excess velocity of the craft by 

1610 m/s while producing a maximum heat transfer rate that is slightly less than 

that of the first pass. The second pass leaves the OTV in an orbit that can be 
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circularized at LEO by a small propulsive burn (200 m/s versus a burn of 

approximately 2400 m/s needed for an all-propulsive return to LEO). Both graphs 

were constructed using data obtained from a computer program used to solve the 

differential equations of motion of the OTV through the atmosphere [4]. The 

graphs shown are for an unladen OTV returning from GEO. For an OTV 

returning a heavy payload to low Earth orbit (LEO) the option exists to make 

three passes in order to keep the heating rates low. 

-First Pass - - Second Pass -- 

0 1 : : : : : : : : : : : : : : ; :  

Two Pass Asrobrake Maneuver 

Time into Aerobrake Maneuver (sec) 

Figure 2-2: Altitude history of A WWSR OTV during aerobraking. 

In order to increase the safety and lower the heating rates of the aerobraking 

maneuver the OTV flies through the atmosphere with a negative L/D [6]. 

Essentially, the vehicle is flying upside down, using the lift produced by the brake 

to pull the craft towards the Earth. This has two distinct advantages. If the 

OTV were to encounter higher than expected densities, which could catastrophicaily 

slow the vehicle sending it crashing to the Earth, the vehicle can rotate around its 

axis to produce a positive lift. This will increase the altitude of the OTV and 

reduce the deceleration. This is discussed further in the section on Aerobraking 

Guidance and Navigation. The second advantage of flying with a negative L/D is 
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that it reduces the maximum heating rate by allowing the vehicle to make longer, 

but shallower passes through the atmosphere. Because the vehicle remains in the 

atmosphere longer, it can pass through at higher altitudes to produce the same 

deceleration. This effect is 

discussed further in the Aerobrake Heating Section. 

-Higher pass altitudes result in lower heating rates. 

Two Pass Aerobrake Maneuver 
Velocity Decrement 

10.5 7 1 

9.5 

0.5 

\ 
\ 

\ 
\ 

-First Pass 
- - Second Pass 

\ 
\ 

out of 

1 
\ 

Atmosphere 

----- 
7 . 5 f : :  i :  z : : :  i : : : : :  4 

0 100 200 300 400 500 600 700 800 
Time into Aerobrake Maneuver (sac) 

Figure 2-3: Graph showing velocity decrement of OTV during 
each pass of the aerobrake maneuver. 

The two pass aerobrake maneuver was chosen for a number of reasons. Most 

importantly, it provides a margin of safety. Aerobraking the OTV in one deep 

pass, a maneuver called aerocapture, is possible, however, slight errors could prove 

disastrous. If the OTV were to encounter a higher than predicted air density on 

such a deep pass into the atmosphere, the velocity decrement due to drag would be 

so large that the vehicle may not be capable of pulling out of the atmosphere. By 

making two, shallower passes the effect of this type of variation can be reduced 

and easily counteracted. 

The total aerobrake maneuver, from GEO to injection into LEO, will take 

The maximum only 8.6 hours; only 15 minutes of which is actual aerobraking. 
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deceleration due to aerobraking will be approximately 1.5 g’s (for a two pass 

maneuver). This is below the maximum accelerations that will be encountered 

during other phases of the mission such as engine firings. 

Aerobrake Design 

The design of the aerobraking device for the proposed OTV has proven to be 

the basis upon which the majority of the other systems have been based. The 

aerobrake design affects the orbital mechanics of the OTV, the materials required, 

the control systems, and the treatment of heating effects. For our OTV, we have 

chosen a raked sphere-cone (see Figure 2-4). This design has a blunt nose 

configuration, similar to but not the same as the Apollo space capsule. Several 

factors lead to the selection of this aerobrake. The raked sphere-cone has a low 

ballistic coefficient (W/CDS = 10 lb/ft2) which makes it ideal for high altitude 

maneuvering where heating effects are small. In addition, it is flexible enough to 

require only a one to three pass aerobraking maneuver through the Earth’s 

atmosphere during the return phase of the mission from GEO to a low Earth 

parking 

(a) Side view. e 
Figure 2-4: Aerobrake Geometry 
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We have designed our brake to be a permanent appendage to the main body 

of the OTV. Although the brake will only have to be removed if severe damage 

occurs, the aerobrake has been designed to allow for easy servicing. All servicing, 

must be by EVA so time constraints are important. The OTV has been designed 

with the engines protruding through the brake in order to provide better control 

and stability. Some characteristics are given in Table 2-1. 

Table 2-1 

Characteristics of the Aerobrake 

2800 lbm 
0.28 
2 

29000/(1.6)(25)2~ 

= 10 lb/ft2 

The design of the aerobrake is derived from work by Park [9] and Bragg [l]. 

The fuel tanks and payload are arranged symmetrically around a reference force 

line (not axially). The aerobrake geometry is derived by raking-off a circular cone, 

blunting the apex with a spherical cap, and faring the frustrum by a fourth-order 

polynomial. This is shown in Figure 2-5. L/D equals 0.28, when the vehicle flies 

at an angle of attack of - s o ,  with respect to the cone axis. By shifting the LO2 
from tank to tank, the c.g. can be shifted in the yaw and pitch plane, changing 

the angle of attack. Using this control the vehicle can even remain stable after the 

loss of one engine [9]. The engines have extendable nozzles that are stored flush 

with the heat shield during atmospheric flight. The cut-out openings for the 

engines are at an off-stagnation point location where the heat- transfer rates are 

lower. In the back side of the aerobrake, the tanks and payload are covered by a 

shroud which provides protection from solar flux, the heat of aerobraking, and the 

impacts of meteoroids and space debris. 
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Cone rake angle = 73. 

Caontric conrtruction of blunted, ralud-off cone. 

Figure 2-5: Geometric Construction of Raked-Cone 

The reference force line (the X-axis, the axis of symmetry) represents the net 

aerodynamic force vector originating from the center of pressure at the desired 

flight angle of attack. The relation between the X-axis and and direction of travel 
is seen in Figure 2-6. As long ag the c.g. moves along the X-axis, the trim angle 

of attack will not be affected. This means that changes in cargo and fuel loadings 

do not affect the trim in this design. Also, the c.g. can easily be shifted to bring 

the aerobrake to any desired trim angle. The c.g. can be shifted by moving LH, 

and LO,, and also by gimballing the engines. This alone can control the 

navigation of the OTV or the RCS rockets can also be used to roll the entire 

vehicle, achieving a time average angle of attack. 

The aerobrake is to be constructed of an inflexible heat shield material, 

These panels are supported by a system of beams 

Weight is distributed over the aerobrake, and 

cemented on metallic panels. 

and struts, as seen in Figure 2-7. 
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the structure of the aerobrake is integrated into that of the entire vehicle, thereby 

minimizing the total structural weight. 
- 
c 

. -  

'j" 

Rake angle = 73. 

vca- 

a 

angle = go. 

Figure 2-6: Flight Path Angle 
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Figure 2-7: NASTRAN Model 
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The skeletal construction of the heat shield is shown in Figure 2-8. The 

structure consists of aircraft-type skin, stringer, rib, and frame construction. The 

skin, which serves as the inner mold line of the thermal protection system, ie 
riveted onto the structure. In section A-A (see Figure 2-8b) notice that the ring is 

rolled into a circular shape. This ring has a flange for the purpose of riveting an 

annular closeout plate at the bottom. The peripheral bulkheads are riveted onto 

the ring as shown. These bulkheads have a flange to which the wraparound edge 

panels are to be riveted as shown ,in section E E  (see Figure 2-8c). The ring, 

annular plate skin, and bulkheads form enclosed structural boxes around the 

periphery of the heat shield. In effect, this provides a stiff outer hollow ring that 

is stiffened every 5 " .  This structural ring then serves to support brackets to 

attach the heat shield to the OTV. 

The aerobrake must be transported by parts and assembled in space, because 

it is too large to fit in the shuttle or the aft- compartment of the external tank. 

Aerobrake Heating 

One of the most problematic aspects of the aerobraking maneuver is the 

heating of the aerobrake due to drag as it passes through the Earth's atmosphere. 

There are two methods of reducing the maximum heat transfer rate of the 

aerobraking maneuver; making multiple passes through the atmosphere and flying 

at a negative lift-to-drag ratio. 

Multiple passes allow the OTV to make shallower dives into the atmosphere. 

The heating rate of the brake is reduced because the aerodynamic slowing of the 

OTV is performed gradually over a greater time period. Figure 2-9 shows the 

heating rates of a two pass maneuver relative to that produced by single pass 

aerobraking [4]. Making two passes results in a decrease of the maximum heating 

rate by as much as 30%. As seen in Figure 2-10, the two pass maneuver can be 

optimized to give a minimum mission heating rate. As it turns out optimization 

results in both passes being of approximately the same depth into the atmosphere. 

Minimizing the heating rates results in a slightly greater than minimum 

deceleration on the second pass, however, this deceleration is well within the 

structural and physiological limits of the OTV and crew. 
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Figure 2-8: Construction of Heat Sheild 
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Figure 2-9: Graph showing the relative heating rates of 
a two pass aerobraking maneuver compared to that of a single pass. 
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Figure 2-10: Graph showing minimization of a two pass 
aerobraking maneuver. Note optimization of heating rates results in 

higher than optimal decelerations. 

Figure 2-11 shows the heating rate during aerobraking for an OTV of similar 

configuration as the WWSR OTV. This graph was constructed for an OTV with 

a ballistic coeffiecent of 11.9 lb/ft2 making a one pass aerobraking maneuver [l]. 

The WWSR OTV has a slightly lower ballistic coefficient (10 lb/ft2) and will 

therefore encounter lower heating rates than shown. Figure 2-12 shows this effect 

of the ballistic coefficient on the heating rate. Additionally, the WWSR OTV will 

be performing a two pass maneuver that will reduce these rates by approximately 

30%. A conservative estimate of the total (convective and radiative) maximum 

heating rates encoutered by the WWSR OTV, as compiled from numerous sources 

[1,8,9,10), has been calculated as 25 Btu/ft2-sec (28 W/cm2). Compared with other 

braking configurations, such as a lifting body or aerobraking tug, the WWSR OTV 

will produce relatively low heating rates. The relationship of these rates to the 

thermal protection systems of the OTV will be discussed in a following section. 
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Figure 2-11: Graph showing the heating rate history of an 
aerobraking OTV of similiar configuration to the WWSR OTV. 

In order to reduce the heating rates further, the WWSR OTV will fly 

through the atmosphere with its lift vector pointing towards the Earth. This 

allows the OTV to make a shallower pass into the atmosphere because the lift 

produced by the vehicle will hold it down in the atmosphere longer producing the 

necessary deceleration. This longer but shallower pass produces the same 

deceleration as a quick, deep pass but with much lower heating rates since the 

densities encountered in the long, shallow pass are lower. 
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Figure 2-12: Graph showing the effect of vehicle ballistic 
coefficient and number of atmospheric passes on maximum heating rates. 

Because of the large size of the WWSR OTV’s aerobrake and the use of a 

multiple pass, negative lift aerobraking maneuver, the heating rates produced will 

be well within the limits of the aerobrake’s heat shield and thermal protection 

system. 

Thermal Protection System 

Several studies [1,8,9,10] have shown that a one pass return trip from GEO 

to LEO, the raked sphere-cone with a ballistic coefficient of 15 lb/ft2 will 

experience between a 35 and 40 w/cm2 heating rate and 2 g’s of decceleration. 

Our computer simulation and other studies (8,101 have shown that thermal and 

mechanical stress can be reduced by 50% for a three pass return with a negative 

lift vector and 30% for a two pass return with a negative lift vector. This is seen 

in Figure 2-13. For a one pass mission the thermal protection system (TPS) 

would weigh 2300 lb and the supporting structure would weigh 2000 lb for a total 

aerobrake weight of 4300 lb. A two pass mission with negative lift effectively 
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reduces the total weight of the aerobrake to less than 2800 lb. Our aerobrake is 

designed for 2800 lb to give a large safety margin. Menees has shown that the 

time required for the return trip from GEO to LEO is 6 hours for one pass and 14 

hours for a three pass mission [8]. This time difference is insignificant for a 14 

day mission; therefore, a multiple pass return is advantageous for weight savings 

and heat reduction. 

As noted in the preceeding section, 28 W/cm2 is the maximum heating rate 

encountered. This heating rate at only one location on the aerobrake and for only 

a few seconds of the re-entry maneuver. Figure 2-14 shows the drop in heat flux 

and pressure across the aerobrake. Notice that the heating rate is small across 

most of the aerobrake. 

The heart of the thermal protection system is the high-temperature reusable 

surface insulation (HRSI) such as that used on the Space Shuttle. A cut-a-way 

view of the HRSI is shown in Figure 2-15. This material is a 12 lb/ft3 fibrous 

refractory composite insulation (FRCI-12) consisting of sintered silica fibers 

reinforced with silicon carbide fibers. The exposed surfaces of the tiles are coated 

with reaction-cured borosilicate glass with SiB4 included as an emittance agent 

[1,2]. The tiles are bonded with a 0.0075 inch thick layer of RTV-560 adhesive to 

a 0.16 inch thick strain isolation pad (SIP) made of felted aromatic polyamide 

fibers (NOMEX) which is bonded to the aluminum skin with RTV-560. The 
thickness of the FRCI-12 is designed to limit the temperature of the outer bondline 

to 550°F  and the temperature of the inner bond line to 350°F.  The thickness 

and density of each material is given in Table 2-2. 
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Figure 2-15: Schematic Diagram of the Thermal Protection System 
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Table 2-2 

Thickness and Density of TPS 

Material Thickness Density 
(inch) ( Ib/ft3) 

Tile coating 0.015 
RTV-550 cement (2 layers) 
SIP 0.08 
FRCI-12 tile 0.43 

0.0035 each 
0.13 
0.11 
0.072 
0.873 

The skirt of the aerobrake, which is a region of high curvature, is covered by 

an array of rectangular tiles arranged in four circumferential rings. This is shown 

in the side view in Figure 2-16. The large, shallow cone area and the ellipsoidal 

nose area of the aerobrake is covered with an array of hexagonally shaped tiles (see 

Figure 2-16). The hexagonal shape of these tiles has several advantages over 

rectangular tiles. The hexagon has a smaller perimeter-to-area ratio than a 

rectangular or square, which results in fewer or shorter gaps between tiles. Also, 
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there are no long running gaps that tend to augment tile edge heat flux. Gaps are 

provided between tiles to accommodate the difference in thermal expansion between 

the tiles and the aluminum substrate, and thus prevent tile-t+tile contact. Tilet= 

tile gap fillers- of woven ceramic cloth are used in regions of high entry-surface 

pressure gradient to prevent high tilegap heating. The gap filler fabric is shown 

in Figure 2-17. 

Figure 2-16: Thermal Protection System on Aerobrake 
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Figure 2-17: Gap Filler Configuration 

The hexagonal shape also results in reduced stresses in the tile, in the tile 

To decrease the cost of the tiles, fewer and coating, and at the tile bondline. 

larger tiles are assumed rather then many small tiles. 

Often a problem exists about the convective heat-transfer rates at the 

frustrum edge. A circular frustrum produces high convective heat-transfer rates 

[Il l .  Such Occurrences of high heat-transfer rates are avoided by contouring the 

frustrum such that the surface curvature increases gradually toward the edge [5]. 

Another problem to avoid is after-body flow impingement, a narrow region 

around and extending behind the aerobrake where convective heat-transfer becomes 

very large. The base turning angle [9] is the angle between the free-stream flow 

vector and the line connecting the frustrum edge with the reattachment. This 

angle is visible in Figure 2-18. Shih has shown that this angle is about 15" [ll]. 

The best protection against this heating is to keep the structure of the OTV and 

payload within the "cone of protection" provided by the aerobrake, as measured by 

the base turning angle. 
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Guidance and Navigation [ 11 

In all past space missions requiring reentry into Earth’s atmosphere, only the 

destination coordinates, expressible with three parameters, have been specified. For 

the AOTV these three parameters need to be specified; plus the velocity vector, 

expressible also with three parameters, and the time when the velocity should be 

attained, are specified at the end of the atmospheric flight. The additional 

requirement makes the guidance and navigation problem very difficult to solve, and 

thus renders it one of the most critical of all technological issues. 

One must assume that there may be errors in the time, position, and the 

velocity vector of the vehicle at the time of atmospheric entry caused by unforeseen 

events. The functional relationship between the position and the velocity vector of 

the vehicle at  the completion and those at the beginning of the atmospheric flight 

indicates that such an error tends to be amplified: the exit parameters are a 

sensitive function of the entry parameters. (The beginning and the end of an 

atmospheric flight can be defined arbitrarily. Typically, the altitude of 150 km is 

considered to be the border between the atmosphere and the vacuum of space.) 

Therefore, any such errors must be corrected early during the atmospheric flight. 

Moreover, the density of the atmosphere at high altitudes, as determined from the 

Shuttle’s flight data, tends to deviate considerably; that is, typically by +/- 25% 

from the standard values. In order to reach the specified position with the 
specified velocity despite the fluctuations in the atmospheric density, the vehicle 

must have a capability for controlling the flight path. 

The raked sphere-cone design provides two degrees-of-freedom control by 

varying lift. In the first method, the 

angle of attack is fixed, and the direction of the lift vector with respect to the 

direction of vehicle’s motion is changed by varying the bank angle of the vehicle 

through the use of the Reaction Control System (RCS) engines. By oscillating 

between two bank angles, the vehicle can achieve a time-averaged L/D which is 

smaller than the L/D of the vehicle. This method of control is similar to that 

used in all the pre-Shuttle space missions. In the second method, the angle of 

There are two methods of controlling lift. 
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attack is varied as well as the bank angle. 'The angle of attack can be varied by 

shifting the c.g.(ie. moving LO,). 

A lifting vehicle induces a coupling between the directional and the lateral 

motions. Therefore, a roll motion requires use of directional'RCS engines as well as 

lateral RCS engines. This problem has been solved by Gamble in Reference 3. 

Because of the complexity of the navigation constraints, it is impossible to 

define uniquely the most optimum algorithm for guidance and navigation of a 

lifting AOTV during its atmospheric flight. However, general guidelines can be 

given: 

I. It is advantageous to fly with a negative L/D (with the lift toward the 
Earth) because this increases the perigee height in exchange for a 
lengthened duration of the atmospheric flight and thereby lowers the 
peak dynamic pressure and heat-transfer rates. 

2. The crosskange travel (orbital plane change) should be made mostly 
during the descent phase; the ascent phase should be reserved for 
correcting for the errors caused by the fluctuation of the air density. 

3. During ascent the vehicle should fly near maximum L/D so that if the 
atmospheric density is too large, the vehicle could roll 180" to produce 
a positive L/D which will raise the flight path and shorten the flight 
duration and avoid catastrophic loss of velocity. 

4. When the navigational errors and fluctuations in density are such that 
the vehicle cannot reach the destination orbit, effort should be made to 
insert the vehicle into the correct orbital plane, sacrificing accuracy in 
apogee height and phase angle (longitudinal). The vehicle should then 
execute in- plane rendezvous maneuvers propulsively to correct for the 
errors. 

The worst situation for fluctuation in density is a lower than expected density 

on descent and then a higher density than expected on ascent. This guides the 

vehicle into a deeper dive in order to decelerate enough. And when the vehicle 

ascends it will encounter a very large density, resulting in excessive deceleration. 

However, calculations show that an L/D of 0.15 would be large enough to lift the 

vehicle out of the atmosphere on a worst case situation of density fluctuation of 

+/- 25% 191. 

44 



J *  

I 

I 

I 

An idea by Menees to aid in navigation is to launch a small projectile in 

front of the aerobrake shortly before atmospheric entry [7]. By analyzing its 

trajectory, the density of the atmosphere can be deduced. The density data is 

then fed into the flight computer as an input to produce a more accurate trajectory 

prediction and maneuver strategy. 
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Chapter 3 

Engine Specifications 

Over the past two decades major research has been conducted in an effort to 

produce a rocket propulsion system capable of reliable and efficient transportation 

of payloads into and from Earth orbit. Until recently, the mainstay of NASA was 

the RL10A-3-8. This engine was defined in 1967 as the engine for an imporved 

Centaur. The RL10A-3-8 was used in the early Shuttle Upper Stage Studies, and 

it was found to  be lacking in several areas [3]. In an attempt to produce a state- 

of-the-art high performance engine, study contracts were awarded to Aerojet, Pratt 

& Whitney, and Rocketdyne to determine what could be done to improve upon 

current designs. This action instigated independent research into the development 

of modern light-weight high performance engines. 

The engine type which came out of this research was the Category IV 
expander cycle engine. This engine was the first expander cycle engine specifically 

designed for the OTV mission requirements. Many of the features designed for this 

engine have been carried through multiple design iterations to the present Pratt & 

Whitney advanced engines. At the time. of its design, the Category IV engine 

maintained the highest chamber pressure (915 psia) thought possible for existing 

materials (31. 

The advent of modern turbomachinery design in the 1980s has permitted the 

stresses acceptable to modern engine chamber designs to be nearly twice that of 

earlier engines. As a result of this advance in technology, NASA has re-evaluated 

the requirements it is placing on the technology goals of the OTV engine. To this 

date, no engine design has met all of the requirements set out by NASA. The 

Pratt & Whitney 1985 Advanced Expander Cycle Engine, specified the RL100, 

shows the most promse in fulfilling the mission requirements currently set down for 

a manned OTV mission. Table 3-1 shows the 1987 updated goals for the OTV 

engine in comparison with the specifications of an unmodified stock RLlW engine 

Ill. 
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Table 3'-1 

I 

Comparison of 1987 OTV Engine Goals and the RLloo Engine 

Parameters '87 NASA Goals RLlOO 

Man- r a t ing 
Fuel 
Oxidizer 
Vacuum Thrust 
Engines per Vehicle 
Mixture Ration O/F 
Mixture Ratio Range 
Inlet Temperature- 

Hydrogen 
Oxygen 

Aerobraking Design 
Criteria 

Vacuum Specific Impulse 
NPSH- 

Hydrogen 
Oxygen 

Weight 
Length 
Reliability 
Operational Life 
Service Free Life 

Yes Yes 
Hydrogen Hydrogen 
Oxygen Oxygen 
7500 lbf (per) 
2 Minimum 2 
6.0 6.0 
5- 7 5.5-6.5 

7500 lbf (per) 

37.8 R (TBD) 
162.7 O R (TBD) 
The engine must be compatible with 
aeroassist return of the vehicle to 
low-Earth orbit. 
490 lbf-sec/lbm 477 lbf-sec/lbm 

15 ft-lbf/lbm 
2 ft-lbf/lbm 

360 lbm 

.9997 
20 hours 

4 hours 

(TBD) 

15 ft-lbf/lbm 
2 ft-lbf/lbm 

290 lbm 
60 in. 
(TBD) 
( T W  
25 missions 

An unmodified RLlOO meets or exceeds most of the requirements stipulated 

by NASA for the technology goals of the OTV engine. The chamber pressure 

(1210 psia) and the vacuum specific impulse of the RLlOO are limited by the 
reduction in efficiency inherent in using small pumps [I]. Research is currently 

being conducted in an effort to alleviate the limitations of the smaller pumps by 

improving the purity of the materials used in the production of the pump shaft, 

seals, bearings, gears and thrust chamber. Advancements and innovations in this 

area can be expected to raise the overall performance of the stock RLlOO by a 

minimum of at least five percent. In an attempt to compensate for the 

performance limitations experienced by the RL100, several design innovations have 

been incorporated. 
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An extendable nozzle is incorporated into the engine design to allow a large 

expansion area ratio without the corresponding length requirements for storage and 

transportation. The extendable 'nozzle of the RLlOO produces an increase in 

specific impulse of approximately 20 lbf-sec/lbm over the same engine equipped 

with a stationary nozzle (3). Figure 3-1 shows how the extendable nozzle of a 

RLlO derivative engine functions to increase the expansion area ratio without 

increasing the overall length of the engine. 

7 71 dil 

C . 2 0 5  1 
Figure 3-1: RLlO Derivative Engine 

The extendable nozzles produced by Pratt & Whitney are composed of 

carbon/carbon fibers coated with silicon carbide. The use of these modern thermal 
resistant materials over traditional nozzle materials increases the operational life of 

the engine while also decreasing its weight. By being a radiation-cooled nozzle 

rather than a dump-cooled nozzle, the complexity and size of the engine and 

pumping system is reduced. 

The turbomachinery of the RLlOO will be manufactured using state-of-the-art 

technology to permit the pumps to perform at a maximum output of 150,000 rpm 

[3]. Figure 3-2 shows the flow schematic of the RLlOO engine at full thrust. The 

performance requirements of the gears and turbines are shown here to be well 

above any engine with similar performance ratings. By using high speed pumps, 

the overall mass and displacement of the RLlOO is reduced by one-third when 

compared with similar engines. 

0 
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Figure 3-2: RLlOO Engine Flow Schematic 

Unlike comparable engines, the RLlOO is self-contained and modular. This 

allows the engine to be easily separated from the OTV for inspection and 

maintenance [5 ] .  As seen in Figure 3-2, the simplicity of the fuel transfer system 

requires that only two valves be shut to isolate the engine from the fuel delivery 

system [3]. While in free- fall, the engine can be removed from its support 

structure in the aerobrake and disconnected from the avionics of the OTV in 

approximately 3 hours (51. 

For the reasons stated above and the stipulated mission requirements, it was 

determined that two RLlOO engines with a combined thrust of 15,000 lbf would be 

the best main propulsion for a man-rated OTV mission. Two engines were chosen 

to give the OTV single-engine-out propulsion capability. Current research 

conducted by Pratt & Whitney and Aerojet has shown that a reliability of 99.6% 

can be expected on a vehicle with two engines. This data gives a nonindependent 

failure rate between 0.03 and 0.05 (61. The fuel efficiency obtained by using two 

engines is less than that obtained using a single engine, but the reliability and 

safety gained from a two engine design increases the expected life of the OTV. 

During the aeroassisted deceleration, the lift versus drag characteristic of the 

aerobrake will be changed by rotating the oblate aerobrake about its center of 

gravity. Having the engine nozzles extended would generate problems with the 

aerodymanics and cause severe deterioration of the nozzles themselves. Figure 3-3 
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shows how the engines are retractable flush to the aerobrake. The engines are 

inherently capable of tolerating the temperatures at the stagnation point in front of 

the aerobrake without oblation. This additional factor makes the RLlOO engine the 

ideal main propulsion system for W WSR’s man-rated OTV. 

I 
4 
I 
1 
I 

/ 
Figure 3-3: Aerobrake Engine Configuration 

a 
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Chapter' 4 

Fuel System 

The fuel system for the OTV will consist of six pairs of fuel/oxidizer tanks 

each with independent delivery and pressurization systems. Check valves will be 

incorporated into the delivery systems to allow isolation of each tank and permit 

pressure relief when necessary. Figure 4-1 is a schematic of the fuel system 

showing the check valves, delivery systems and pressurization systems for each tank 

and the entire system. 

U 

Figure 4-1: Fuel System Schematic 

The fuel/oxidizer delivery system will independently draw and pump from 

each tank. The fuel/oxidizer will then be pressurized at a second pumping station 

just prior to entering the engine. This allows the fuel/oxidizer to be brought from 

its containment pressure of 7 psia to the inlet pressure of 17 psia for oxygen and 

16 psia for hydrogen. The internal pumps of the RLlOO then increase the pressure 

of the reactants to over 1200 psia before they reach the combustion chamber. 

It will be necessary to have the fuel tanks pressurized at  a constant level to 
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simplify the pump and turbine requirements 'of the delivery and propulsion system. 

The reactants that boil off, and are usually vented, will be used to maintain a 

constant pressure with the tanks. This will be accomplished by computer 

controlled venting and recycling of the gaseous reactants. Any excess oxygen will be 

shunted to the ECLSS to be used inside the manned module. Any excess 

hydrogen will have to vented to space. Since it' is unsafe to mix the reactants 

during storage, separate pressurization systems will have to exist for each tank. 

Figure 4-2 is a schematic of the pressurization system for one pair of tanks with it 

connection to ECLSS. 

Figure 4-2: Pressurization System of Tank Pair 

The reactants used in the OTV's fuel system will be liquid oxygen and liquid 

hydrogen. Typical specific impulse values for the RLlOO using these reactants 

would be between 470 and 485 seconds (61. The reactants efficiency will be 

improved by addition of metallic aluminum suspended within the liquid hydrogen 

and the addition of a extendable nozzle to the main engine structure. The 

efficiency obtained after these modifications will increase the specific impulse of the 

RLlOO to approximately 502 seconds (11 not assuming any design improvements 

during its production. 

In determining the fuel requirements to fulfill the mission objective, a dry 

mass for the OTV of 32,670 lbm was used. The requirements of the mission 
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(worst case scenario) are to transport a 24,ObO lbm payload form LEO to GEO and 

then return to the Space Station without a payload. In this case the payload is 

considered to be part or all of gn orbiting space platform. For this mission, the 

engines are required to fire multiple times, assuming instanteous acceleration, to 

facilitate orbital transfer, course corrections and aeroassisted deceleration. This 

I 
,4 I 

information is covered more in depth in Appendix 2. 

The fuel requirements for the mission were determined by using the rocket 

equation and iterating backwards through the required velocity changes. A total 

fuel mass of 121,616 Ibm is required to produced the necessary transfers for this 

mission. For safety the tanks will be filled to 125,000 Ibm. However, if necessary, 

the tanks could be filled to capacity, 132,000 Ibm. The fuel is separated in 18,857 

lbm of liquid hydrogen and 113,143 Ibm of liquid oxygen. 

1 
I 
I 
a 
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Chapter 5 

Materials and Striietures 

The basic ideas in designing the material and structure for the OTV is to 

make it lightweight, strong enough to withstand the stress of aerobraking, and heat 

and radiation resistant. 

Lightweight - If the structure is reduced by one pound, then the savings in 

Therefore, the structure will be made as light as possible fuel will be four pounds. 

in order to save fuel or to increase the payload. 

Strength - Since the OTV is space based, the structure will not have to be as 

heavy (strong) as a ground based structure. The acceleration experienced during 

the ascent to  GEO is at least an order of magnitude lower than the 1.5 g 

deceleration of aerobraking IS]. The structure will be under maximum stress during 

aerobraking, not the ascent to GEO. The stress caused by thrusting the engines is 

also in the same direction as the stress of aerobraking because the engines protrude 

from the heat shield. The structure is designed to withstand the stress of 

aerobraking (1.5 g) and a safety factor of 1.4, unless stated otherwise. 

Heat resistance - The structure will be exposed to thermal cycling and high 
temperatures. During aerobraking the structure will be exposed to various high 

temperatures depending on the location of the part. All exposed areas must retain 

sufficient strength a t  the maximum temperature to withstand the stress that occurs 

during the exposure at that temperature. Because the OTV will be used many 

times, the structure must be able to cycle between maximum and minimum 

temperature without losing a critical amount of strength. Thermal cycling will also 

occur due to exposure to solar radiation on one side, while the other side is 

shaded. Temperatures could cycle from -175" to +500'F if the OTV is not 

constantly rotating or if the solar radiation is not reflected. 

Radiation resistance - Solar radiation tends to weaken materials. The 
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structure must be designed to retain the required strength during the OTV's entire 

lifetime, or the'parts must be easy to replace. 

Structure - The structure includes the engines, engine quick disconnect plate, 

thrust structure, connectors, tanks, tank support rings, struts and supports, 

command module, EVA module, docking/service/equipment/avionics assembly, 

payload attachments, robot arm and aerobrake. A description of each follows. 

Enpines - The engines have extendable nozzles that protrude out the heat 

shield. During re-entry the nozzles will be retracted so that they are flush with 

the heat shield. Refer to Chapter 3 for a more detailed description of the engines. 

Mass = 580 Ib. 

Engine quick disconnect plate - This aluminum plate enables the engines to 

be disconnected quickly for repair or replacement. Mass = 100 lb. 

Thrust structure - The thrust structure transmits loads from the engine to 

the rest of the structure and to the payload. The assembly consists of a cone- 

frustrum-shaped composite structure consisting of honeycomb sandwich skin panels 

(0.01 inch graphite/epoxy face sheets on a 0.079 inch thick nomex core of 0.91 

lbm/ft3 density), a thrust distribution ring, and thrust beams. The assembly 

begins directly below the command module and attaches to the tanks through the 

connectors. Six tubular thrust beams (2 inches in diameter) are attached to the 

aerobrake to uniformly distribute the load across the brake. Total mass = 210 Ib. 

Propellant tanks - A spherical design has been chosen because it is simple, 

has good pressurization characteristics, and has maximum volume-to-mass ratio. 

The tanks can be spin formed and then chem milled to the correct thickness [7]. 
The tanks will be insulated by multi-layered insulation (MLI) which is described in 

the next section. Unlike ground-based vehicles, a space-based OTV is designed to 

operate solely in the vacuum of space and does not require that propellant tank 

pressures be maintained above 14.7 psia. The propellant will be held at a low 

pressure, 7 psia, to reduce the load on the tank structure, therefore making the 

structure lighter [7]. Figure 5-1 shows that the weight of the propellant tanks 

55 



J '  
decreases as the tank pressure decreases'. Reducing tank pressures below 

atmospheric requires that propellant saturation conditions be lowered so that the 

fluids remain in the liquid ph&e [?I. The LO, tank is not pressure cycled 

(purged) between missions, but the LH, tank must be. The tank interiors are 

designed to support slosh baffles, inner bladder and a liquid acquisition device. 

900 1 1 I i 

n z 
I- 
I 

w 
(3 

3 

TOTAL TANK STRUCTUR'E WEIGHT 

700 a o o k  1 WEIGHT LHZTANK I TOTAL TANK STRUCTUR'E WEIGHT 

300 - 
200 - 
100 - 

PRESSURE (PSIA) 6039-4 

Figure 5-1: The relation between tank pressure and structural weight. 

The selection of material for the propellant tanks is important because many 

materials are sensitive to LO, and many can be embrittled by hydrogen. Also, low 

temperatures can reduce ductility and fracture toughness of some metals. 2219 

aluminum is often used for cryogenic tanks and works well. A new alloy, 2090- 

T8E41 aluminum alloy ( Al-Cu-Li-Zr ), has been developed that has better 

properties than 2219 [7]. Table 5-1 is a listing of mechanical properties of the 

2219 and 2090 alloys. The 

higher strength-to-weight ratio will enable the tanks to be lighter. Also, the 2090 

alloy's tensile strength increases at lower cryogenic temperatures [SI. Table 5-2 lists 

the mechanical properties of 2090 at 298, 77, and 4 " K  showing this increase in 

tensile strength. 

The 2090 alloy has higher strength and less density. 
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Table 5-2 

Fracture Toughness and Tenrlle ?raprrtlas o f  ZOYO-lEEll a t  298 K a d  77 K 
~~ ~ 

Fracture Toughness U n i a x i a l  Tensile Propert ies 
Temperature L-T Lt45 S-T S - 1  Yteld Stress UTS X Elong. 

( M P d m )  ( 1 (HPa) (on 25.4 m) 

298 K 36 2 9  16 17 535 5 65 11 
35 

511 
77 K 51' 47* 13 15 600 715 14 

4 1 :  641 - - - 61 5 820 18 

The tanks were designed so that six pairs will carry the fuel necessary for 

Each LO, tank is 4.2 ft  radius, 100 lb, 

Each LH, tank is 5.8 ft radius, 250 lb, and holds 

maximum payload (worst case scenario). 

and holds 18856 lb of LO,. 

3144 lb of LH,. 

MLI - The Kapton MLI is composed of layers of 3.75 micron aluminized 

See 

The tank is 

There is no efficient 

If the heat follows a tortuous 

kapton plastic (30 for LH,, 20 for LO,) each separated by a silk-net layer. 

Figure 5-2. 

built like a Thermos flask, with an evacuated double wall. 

way for heat to be exchanged between the layers. 

These are held together by widely spaced plastic pins. 
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path by way of the plastic pins, the low heat conductivity of the plastic allows 

very little to get through. And if it radiates from layer to layer, the aluminum 

coating on each sheet reflects nkarly all of it. This insulation allows liquid 

hydrogen and oxygen to be store for extended periods of time in space. MLI has 

been tested in a vacuum at NASA Lewis [I]. MLI was chosen over the commonly 

used polyurethane foam insulation to reduce volume and weight. MLI also offers 

some protection from meteoroids/debris. 

Figure 5-2: Schematic of MLI Thermal Protection 

Connectors - The connectors attach the LH, tanks to the thrust structure and 

the LO, tanks to the command module. These connectors contain the disconnect 

panels that allow the tanks to be modular. Up to six pairs of tanks can be added 

to the OTV. An aluminum alloy is used 

because the tanks will be connected and disconnected often. This handling might 

damage a composite material and cause delamination. For each pair of tanks (LH, 

and LO,) two polygonal frames of aluminum support all the propellant system 

plumbing and interface with the propulsion system. Male connectors are located 

below the LH, tank and above the LO, tank. Female connectors are located at 

the thrust structure below the command module and at  the top of the command 

module. Mass = 75 lb per set. 

This is shown in Figure 5-3 and 5-4. 

Tank support rings, struts, and supports - These components will be 

This is an ultra-high modulus graphite unidirectional 

The material’s resin solid content is 40% with a 

The low thermal conductivity of this 

RCA-2606114 graphite/epoxy. 

tape/low microcracking epoxy. 

nominal prepreg thickness of 0.0025 inch (31. 
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1 
I material will prevent heat loss from the cryogenic tanks. The ceramic 

graphite/epoxy also has a much greater strength-teweight ratio than metals, 

allowing the structure to be lighter. Figure 5-5 shows the ultimate tensile strengtb 

of the G/E. 
- -  

Figure 5-3: Drawing of OTV with two modular tank sets connected to the 
central structure. 
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6039-2 

Figure 5-4: Tank support structure and connections with the 
centr a1 structure. 

RCA has performed thermal cycling tests, radiation tests and combinations of 

the two tests resembling 10 years at GEO orbit, and has found that this 

graphite/epoxy retains much of its strength. The radiation environment was 

simulated by exposing the test coupons of the materials to an electron beam of 

energy 12 MeV to a total ionization dose of 3x108 rads. The dose rate during 

irradiation was 3x108 rads/hour. This dose rate is about four orders of magnitude 

higher than the space dose rate and represents the worst-case simulation of the 

space radiation environment [3]. The thermal environment was simulated by 

thermal cycling (3000 cycles) between temperature extremes of -300 and 160' F. A 

transition rate of about 11' F per minute was used for thermal cycling [3]. The 

results showed that beginning of life tensile strength = 135 ksi, end of life tensile 

strength = 110 ksi [3]. The tensile strength of aluminum is closer to 50 or 60 ksi. 
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Figure 5-5 

Graphite/epoxy tubular struts (2 inch diameter) are used to attach the tanks 
to the tank frames. Figures 5-4 and 5-6 show the skeleton structure of the OTV. 

Twenty-four struts are used for each tank (see Figure 5-6). To prevent buckling of 

the tank wall, strut angles must be selected such that the tank does not experience 

negative deformations or compressive stresses. A G/E tubular support ring ( 5  inch 

diameter) will support and separate 

is 220 lb ( for a pair of tanks). 

the two tanks. The mass of these components 
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MULTI- LAYER INSULATION 6039-3 

Figure 5-6: Tank Support Structure 
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Command/EVA module - The modules will be semimonocoque. The outer 

skin will be stiffened with ring frames and skin stringers (see Figure 57) .  The 

structure will be 2090 aluminum. The command module also holds the 

graphite/epoxy tube ring support and the female connector for the propellant tanks. 

The mass for the structure of the command and EVA modules are 10700 and 1500 

lb, respectively. The modules also contain three hatches with a combined mass of 

300 lb. 

Docking/service/equipment/avionics assembly - This assembly will be attached 

to the side of the EVA module. The assembly provides for external mounting of 

equipment and avionics, a universal docking system, and service connector panels 

for fluids, gases, and electric power. A peripheral latch/release system for payload 

accommodation and robot arm are attached to the top of the EVA module. The 

arm is discussed in Chapter 12. Mass = 180 lb (excluding the robot arm). 

Aerobrake - The aerobrake will have to repeatedly withstand very high 

temperatures and heating' rates for a short period of time, and keep the 

temperature of the structure below 3 5 0 " .  For a one pass mission the maximum 

temperature on the surface may reach 2000" and maximum heating rate could 

reach 35 to 40 W/cm2. Therefore, the OTV will conduct multiple pass missions, 

thus reducing the maximum surface temperature to below 1000° and maximum 

heating rate to 20 W/cm2. The aerobrake is discussed in detail in the aerobraking 

chapter. Mass = 2800 lb. 

Heat and debris protection - The OTV structure and payload need to be 

protected from the heat of aerobraking and collisions with meteoroids/debris. A 

very thin aluminum foil extendable blanket will be used to surround the structure 

and payload. The high reflectivity of the aluminum foil will reflect most incident 

solar or heat flux away from the OTV, and will provide some protection from 

space debris. The probability of puncture by micrometeoroids is low and could be 

substantially reduced if the OTV were to be stationed within a depot when not in 

use [Z]. And even if a micrometeoroid did puncture a fuel tank, the tank would 

leak but would not fail catastrophically [4]. Therefore, a heavy meteoroid 

protection shield will not be used. 
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Surface coating - All surfaces that will be exposed to solar radiation and 

radiative heat transfer from the aerobrake maneuver will be painted white 

(excluding the heat shield tiles). White paint (293 and S13GLO) has the best 

reflectivity and lowest absorption. The absorptance is 0.18 and the emittance is 

0.9. This reduces the amount of solar radiation that is changed into heat. 

Skin 

txme (0 

Figure 5-7: Semi-monocoque Structure 
t = 1.0 in 
t, = 0.5 in 
b = 10.0 in 
b, = 1.5 in 
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Chapter 6 

Ambient Heat Transfer 
c 

The ambient radiation received by an object at one astronomical unit from 

Sol is known as the solar constant and has a value of 1353 W/m2. this value 

assumes the object to be located at the equator of the Earth and perpendicular to 

the incident radiation. The actual value received by the OTV will be within 15% 

of the solar constant [2]. The OTV will also radiate excess heat to the 

surroundings. Conductiion and convection can not occur into a vacuum, therefore, 

radiation will be the only way for the vehicle to lose heat. 

The energy flux lost to the surroundings by radiation can be determined by 

using the equation: 

In this instance the ambient temperature of the surroundings is approximately 4 " K 

not including the Earth. The surface temperature of the OTV is limited by 

temperatures of the fuel and manned module. Assuming conduction from the 

engine and crew quarters through the support structure of the vehicle, the surface 

temperature of the vehicle would be at a maximum of 295°K for GEO conditions. 

This value can reach as high as 350 ' k during aerobraking [3]. The average 

emissivity value for the OTV materials is 0.89 [2]. Assuming this value, the 

radiation flux to the surroundings is 80.740 W/m2. The OTV is receiving 16.75 

times as much energy as it is radiating. 

This influx of energy will cause a loss in fuel due to boil-off. To partially 

alleviate this problem, the OTV will be coated with materials that overall have a 

low transmissivity and absorptivity while maintaining a high reflectivity. The 

relationship of these three values can be seen in the following equation: 

p + a + t = l  [z] 

Where p is the reflectivity, a is the absorptivity, and t is the transmissivity. 
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Polished aluminum, aluminum coatings, or gold will be used to insulate areas (fuel 

tanks) where radiation absorption is to be kept to a minimum. Those areas 

(aerobrake and. exhaust nozzle) - where radiation emission is. required will be coateh 

with silicon carbide and ceramic tiles similar to those used by the Space Shuttle. 

The manned module will be constructed of aluminum with a white metallic coating. 

Since this module is surrounded by six sets of fuel tanks, this coating will be all 

that is required to maintain a minimum absorption of energy. The combination of 

these materials. will allow the vehicle to maintain a relatively constant temperature 

for the crew compartments and the fuel tanks. From data already obtained, the 

expected surface temperature of the OTV will be approximately 2 0 0 ° K  [I]. 
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Chapter 7 

Electrical Power System 

The Electrical Power System (EPS) produces electrical power for the OTV 

during all mission phases. The EPS onboard the WWSR OTV will consist of two 

hydrogen (H2) - oxygen (02) fuel cells and one bipolar nickel-hydrogen battery. 

The fuel cells will be United Technologies’ latest version of Shuttle-technology 

power plants (which are thirty percent lighter than current cells). [I] These fuels 

cells are extremely reliable and provide the most effecient means of production of 

electricity for the OTV’s mission (two week duration at 20 kilowatts maximum). 

The Ni-H battery represents state-of-the-art technology in energy storage. It is the 

lightest, most reliable, and most powerful of all spacecraft battery systems. 

The fuel cells produce direct current electrical power through a controlled 

chemical reaction of the hydrogen and oxygen. The hydrogen and oxygen reactants 

will be cyrogenically stored in the main tank sets. Proper reactant gas pressure is 

maintained in the tanks by small heaters controlled by the onboard computer 

system. Additionally, the oxygen tanks will double as the storage tanks for the life 

support systems. The fuel celIs will simultaneously produce 28 volts of direct 

current at a maximum power of 10 kilowatts. The total maximum, onboard power 

requirements are 7.5 kilowatts; the extra capacity is available to power the OTV’s 

payloads if needed. The cells will be actively redundant, as each cell is capable of 

providing full mission power in the event that one goes off line. Power production 

is controlled by the Electrical Control Unit (ECU) which is part of the fi.:4 cell. 

The ECU controls the reactant flow rate as determined by the power demand. A 

by-product of the production of electricity by the reaction of hydrogen and oxygen 

is pure water. This water, on the order of 6 kg per hour, will be stored in one of 

two water tanks and can then be used for thermal control or human consumption. 

Total mission energy is expected to be approximately 2000 kW-hours thus requiring 

about 1390 lbs kg of oxygen and 210 Ibs of hydrogen [l]. 

A single nickel-hydrogen battery will provide emergency power backup, line 
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transient supression, and autonomous startup capability. The Ni-H battery will be 

fully charged at the Space Station and will be actively recharged by the onboard 

fuel cells during a mission. The battery will be capable of providing reduced 

emergency power for approximately two hours in the event of a catostophic failure 

of the fuel cell system (a source of electricity is needed to start or restart power 

production in the fuel cells). It's main function, however, is to provide a source to 

smooth power surges caused by major subsystems coming on line [3]. 

Electrical power distribution is controlled by the Electrical Power Distribution 

System (EPDS). The EPDS converts and controls the flow of electricty to the 

subsystems of the OTV. Additionally, the EPDS monitors and controls the 

reactant gas levels and pressures, surge supression, and charging of the Ni-H 

battery. The EPDS is connected to the Data Management System for status 

output and crew control. 
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Figure 7-1: The Electrical Power System 
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Chapter 8 

Environmental Control and Life Support Systems 

The ECLSS for the OTV will be largely based on present technology used on 

This was decided to eliminate the cost of research and 

Also, present ECLSS technology on board the Space 

The life support will have the following 

the Space Shuttle [l]. 

development on new systems. 

Shuttle has proven to be highly reliable. 

systems [4]: 

1. Atmospheric Revitalization 

2. Thermal Control 

3. Crew Systems 

A system integration flow chart of the above systems is shown in Figure 8-1. 

Each of these systems will be discussed in more detail below. 

Atmospheric Revitalization 

This system is given the task of providing fresh air to the crew members and 

is therefore the most important system. It is illustrated in Figure 8-2. 

Air is drawn into the system by fans located strategically throughout the crew 
and command modules particularly around the cockpit area. After passing through 

the intake ducting, the air is filtered by a debris trap to remove dust and foreign 

particles. The exiting air is then divided into several other air streams which are 

individually processed. One stream enters a unit of canisters containing lithium 

hydroxide, copper sulfate, and activated charcoal. The lithium hydroxide extracts 

carbon dioxide and the charcoal removes air impurities for odor control. The copper 

sulfate extracts ammonia. 
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Figure 8-1: OTV ECLSS 
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Figure 8-2: OTV Atmospheric Revitalization System 

Only two canisters can fit into the system. One is actually used and the 
other is a reserve. When the components in the active canister are consumed, the 

system automatically switches to the reserve canister. Consequently, the canisters 

must be changed by the astronauts to insure system operation. Canister life, with 

three astronauts, will last 32 hours. Thus, 11 canisters will be needed for a 14 

day mission. These will be stored above the system in one of the package 

compartments for quick and easy access. 

The purified air then rejoins the main airflow. A temperature sensor in the 
crew and command module activates a valve that divides the air. A portion enters 
the air bypass duct where micro-organisms are filtered, and the other portion enters 

the cooling system. This cooling system is actually a condensing heat exchanger 
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that cools the air below the dew point. The heat build-up that occurs is reduced 

by the water_'cooling loop (this will be discussed in the next section). The air 

exits the heat exchanger and is then rejoined with the bypass air. Fresh oxygen is 

immediately added to the mixture from oxygen in the propulsion system, and the 

new mixture is vented into the crew and command modules. It is estimated that 

an air flow rate of 353 ft3/min is needed to operate the system. 

This system should maintain an air temperature between 55 'F  to 70'F and 

an air pressure of 14.7 psia. Nitrogen will be stored in separate tanks adjacent or 

across from the system so that the atmosphere will have a 20% 0, and an 80% N, 
mix. A control in the crew module will permit desired selection of the 

temperature. 

A repressurization airlock will be needed in the EVA module. This airlock is 

It is placed on the 

This airlock will facilitate crew exit and entrance 

a cylinder whose diameter is 4 feet and whose height is 7 feet. 

outer edge of the EVA module. 

into the OTV from the Space Station. 

During EVA operations, the fully suited astronaut will enter the 

repressurization port or airlock from the command/crew module and seal the 

entrance door. Exit from the module may then be achieved accordingly. Upon 

completion of EVA, the astronaut reenters the port, seals the exit hatch, and 
repressurizes the port. The air lock is repressurized by air that is bled from the 

command/crew module. It is estimated that the airlock will require about 6.65 

lbm of air. This amount of air is not expected to effect the amount needed in the 

crew/command module, whose air requirements are about 202.1 lbm. 

Additionally, the EVA module will not be pressurized at all, thus eliminating 

This will also reduce the amount 

The astronauts will perform their necessary work in a 

Entrance and exit into this portion of the module is made 

the need for a separate repressurization system. 

of required 0, and N,. 

vacuum environment. 

through a door in the airlock. 

Since the OTV will be pressurized with and docked alongside the Space 
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Station, a full-scale repressurization system is unnecessary for the entire vehicle 

before mission operation. The OTV, before its severence with the docking bay, will 

activate its ECLSS. A safety factor of 1.25 has been included for the metab06 

requirements of 0, and N, to account for leaks in the system. 

A monitor system will also be included to measure the oxygen, nitrogen, and 

carbon dioxide levels. This system will control oxygen and nitrogen supply and 

carbon dioxide removal. Information from the system will also alert the crew in 

case of malfunction. Table A1-2 in Appendix 1 gives the mass and power 

requirements to operate the complete air revitalization system. Most of the power 

will be needed to operate the ventilation system, the fans, and the condensing heat 

exchanger. 

Thermal Control 

A thermal control system is needed to remove excess heat away from the 

command and crew modules of the OTV. This excess heat originates from the 

electronic equipment on board, the fuel cells, the windows, and body heat from the 

astronauts. 

This system is illustrated in Figure 8-3 and 8-4, and is comprised of a water 

and a Freon cooling loop. Water, cooled from the Freon interchanger, is routed to 

two heat exchangers. The 
water is then fed into the condensing heat exchanger (humidity control heat 

exchanger in the diagram) of the air revitalization system. The water passes into 

the inertial guidance heat exchangers which cool the guidance system of the OTV. 

These heat exchangers cool the crew’s drinking water. 
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Figure 8-3: OTV Water Loop [I] 

Figure 8-4: OTV Freon Loop [I] 
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Then, the partially heated water is routed to a water pump that returns a 

portion of the water back to the Freon interchanger and feeds another portion to 

both a cold plate and to the avionics bay cooling assembly which cools the avionics, 

in the cockpit area. The water from this assembly goes into a cold plate where 

the water temperature is partially lowered. From here, the water is routed through 

window and hatch passages to cool these structures from sunlight and aerodynamic 

heating. It has been estimated 

that a water flow rate of 221 lbm/hr is needed for adequate heat removal. 

The water then returns to the Freon interchanger. 

The Freon loop receives all the heat from the water cooling loop through an 

interface heat exchanger and cools the water to about 41  OF. A pump circulates 

the Freon as shown which flows to the fuel cell and power system heat exchangers. 

The flow rate must be at 780 lbm/hr for proper operation. These systems are 

Freon cooled accordingly in which the Freon now has been heated to 158 O F  due to 

tremendous heat absorption. 

The Freon then flows into the water flash evaporator where it is cooled to 

38.8'  F. This evaporator vaporizes water to the outside of the vehicle and uses the 

heat of vaporization of the water to cool the Freon. The heated Freon is piped 

into a low pressure chamber through minute passages in the chamber walls. This 

pressure chamber is equipped with a vent to the outside. Water is then sprayed 

onto these walls where it evaporates, and this evaporation extracts the heat from 
the Freon. The extracted heat is later vented to the outside in the form of steam. 

The water that is needed for this operation should come as a by product from fuel 

cell operation. 

After this process, the Freon is returned to the interchanger. Due to its toxic 

nature to humans, the Freon loop must be adequately sealed since it will be placed 

directly into the crew module. Sensors must be installed around this location to 

alert the crew of leaks. The mass and power requirements for the thermal control 

system can be found in Appendix Table AI-2. Power will be mainly needed to 

operate the pumps found throughout the water and Freon loops. 
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Crew Systems 

The crew systems for the OTV will facilitate eating, drinking, sleepink 

hygiene, and liquid/solid waste disposal. The requirements for this system are 

given in Appendix Table A1-2 Dehydrated and frozen foods will compose the main 

diet for the astronauts. At first, dehydrated foods were only considered, but owing 

to the rather long mission duration of 14 days, frozen foods were added for food 

variety. The dehydrated food is. rehydrated by adding water (hot or cold, 

depending on preference) from the potable water system. The frozen foods are 

stored in a small freezer and prepared in a small microwave oven. Drinking water 

will be furnished from water produced from fuel cell operation, which will be cooled 

by the water- cooling loops before its actual use. Potable water can also be 

obtained from the condensation that forms from the cold plates in the thermal 

control system and from condensation that forms from the condensing heat 

exchanger in the air revitalization system. An emergency water storage tank will 

also be provided in case of system failure or malfunction. 

Human wastes are handled with a toilet that separates the solid and liquid 

wastes which are placed into individual chambers by pressurized air. The solid 

wastes are stored until the OTV docks with the Space Station, where as the liquid 

waste (which also contains air odors) is injected into a separator. This device uses 

a rotating shell to force the liquid to the outer perimeter where it is removed and 
piped to the waste water tank for eventual ejection to outer space. The air odor 

is directed through a charcoal filter to remove the odors and then is returned to 

the cabins. 

Hygiene will be provided through towel wipes laced with an antiseptic and 

compact shower bags like the ones found on the Space Shuttle. Water for these 

components will be taken from fuel cell operations. The water from the fuel cells 

will be at a temperature of 160' F and will be maintained at this temperature until 

it is used to prevent the growth of bacteria. Prior to use, it will be cooled via the 

water cooling loop to about 110' F. 

77 



e 

The crew will use compact sleeping bags that will suspend freely from the 

sides of the-  crew module interior to sleep and rest. Three such bags will be - included so that all crew members may sleep or rest simultaneously. * 

Radiation 

Dose limits for radiation workers on earth are currently set at 5 Rem/year. 

Such limits are unrealistically low for astronauts [2]. Astronauts will be exposed to 

the danger of radiation unless they are protected with heavy radiation shielding. 

But space travel is a hazardous undertaking, and reducing the possibility of mission 

failure due to one type of hazard significantly below other types of hazards may be 

undesirable. Increasing the radiation shielding may in turn reduce the safety 

margin in propulsion or life support by adding too much weight, and may increase 

the overall risk of mission failure. 

The amount of radiation that the astronauts of the OTV will receive during 

normal orbiting is negligibly small, even after 14 days. As seen in Tables 8-1 and 

8-2, the OTV will receive 0.8 RAD per day (0.9 REM per day) at GEO and less 

than 0.1 RAD per day at LEO. Most danger comes from solar flares and the van 

Allen Belt. The time spent in the van Allen Belt on re-entry is very small, even 

with multiple pass entry. As shown in Table 8-3, Menees calculates that even for 

a 3 pass mission the OTV will graze the lower edge of the van Allen Belt only on 

the first pass, because the belt extends between 2.5 to 7 earth radii [3]. 

Solar flares, on the other hand, could cause significant radiation exposure. 

The protection that is afforded in the OTV is the structure of the OTV, the 

structure of the tanks, the propellant in the tanks, and the astronaut’s space suits. 

The astronauts also have the option of turning the aerobrake to block radiation 

from solar flares if no pertinent operations are being performed at the time. 

During our worst case mission, the OTV will receive only 7.2 REM, 
neglecting solar flares. As seen in Figure 8-5 and Table 8-4 this is a negligible 

amount and will not cause illness nor decrease the astronauts ability to perform a 

mission. Table 8-5 also demonstrates that the radiation will have an insignificant 
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effect on the electronic components, lubricants, hydraulic fluids, glass, ceramic, and 

structural metals. 

Table 8-1 

 SPA^ RADIATION DOy R A ~  (RAD/DAY)EXPECTED FOR ORBITAL Musio@ 

Orbital ahitude 0.1 gm/Cml 1.0 gm/cml 10 qn:cm’ 

300 Equator 3 x 102 <0.1 <0.1 <O.l <0.1 <O.l  
Polar 5 x 10’ 90 0.1 3 <@.1 0.2 

Polar 4 x 10’ 100 0.2 3 <0.1 0.2 
600 Equator 1 x 10’ <o.i 5 <0.1 2 co.1 

I 4 0.4 0.2 Polar 3 x 103 1x1 
1000 Equator 1 x lo5 <0.1 50 <O.l 15 <0.1 

I5 4 5 0.2 

300 5 100 0.3 

10 6 3 0.4 

(km) 
Van Allen Other‘ Van Allen Other Van Allen Other 

400 Equator 2 x 10’ <0.1 I <0.1 0.3 <0.1 

Polar 3 x IO’ 200 

Polar I x 105 MO 

Polar 4 x 10’ 400 

Polar I x 105 800 

3000 Equator 3 x 105 ~ o . 1  lo00 <0.1 300 qo.1 

10,000 Equator 1 x 106 <O.l 30 <0.1 10 <0.1 

4 x 10’ 16 3 16 0.5 0.8 31,000 Equator 
0.6 16 0. I 0.8 

‘ AI1 entries have la limits of & a factor of 3. Van Allen dose rates calculated for orbiu in 1970, 
active Sun. usuming no more high altitude nuclear detonations. Galactic and flue do# aC 
culated for solar maximum, 1 % flare probability, averaged over 6 m o n t h  
’ Other: i nduda  flare and galactic radiation 

Table 8-2 

S ? A ~  RADIATION Dasr RATES (REMIDAY) E X P E C ~ ~ D  FOR ORBITAL MISloNs’ 

Orbital altitude 0.1 gm/cm’ 1.0 gmtcm’ 10 gmlcm’ 

Van Allen Other‘ Van Allen Other Van Allen Other 

<O.l  <0.1 

0.3 <0.1 

(km) 

300 Equator 3 x 102 <O.l <0.1 <0.1 
<0.1 6 <0.1 0.2 

0.3 8 <O.l  0.2 
600 Equator I x 10‘ <O.I 6.5 <0.1 2 <0.1 

1.3 10 0.4 0.2 

20 12 5 0.2 

Polar 5 x 10’ 250 

Polar 4 x IO’ 300 

Polar 3 x 103 500 

Polar 3 10. 800 

Polar I 105 1200 

Polar 4 x 10s 2 103 
31,000 Equator 4 x 105 50 

Polar 1 x 10’ 4 x 103 

so0 Equator 2 x 10’ <0.1 1.3 <0.1 

1000 Equator I x 105 <O.I 65 <0.1 16 <0.1 

3000 Equator 3 x 105 c0.1 1300 <0.1 330 <0.1 
400 I5 I10 0.3 

12 ia  3 0.4 
3 50 0.5 0.9 

0.6 50 0.1 0.9 

10.000 Equator 1 x 106 <0.1 35 <0.1 10 <0.1 

All entries have la  limits of f a factor Of3. Van Allen dose rates calculated for orbits in 1970, 
active Sun. assuming no more high altitude nuclear detonations. Galactic and flare do= 
calculated for solar maximum, I s; flare probability. averaged over 6 months. 
’ Other: includes flare and galactic radiation. 
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Table 8-3 

Duration and apogee altltudc for multiprrr . .  aeroass 1-1 oris 

CEO to- Shuttlc- 
orbit  Nuder o f  

atmospheric 
passes Alt ,  

hr km 
1 6.1 400 

5: 
I1 

3 #2 

10.0 11,661 
400 

16,773 
14.1 7.670 

NO INCAPACITATION 

750 
ACUTf WOLf DODY DOSf (MM) 

Figure 8-5: Incidence of sickness and death from acute radiation. 
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Table 8-4 

EXPECTED EFFECTS of ACUTE WHOLE-BODY RADIATIOS DOSES - 
Acute Dose Probable cflect 
(roentgens) 

e-50 
80- 1 20 

130-170 

180-220 

270-330 

400-500 

550-750 

1000 

So00 

No obvious cflect, except possibly minor blood changes 
Vomiting and nausea for about I day in 5 to 10 percent of exposed personnel; 
fatigue, but no serious disability 
Vomiting and nausea for about 1 day, followed by other symptoms of radiation 
sickness in about 25 percent of personnel; nodeathsanticipated 
Vomiting rnd nausea for about 1 day, followed by other symptoms of radiation 
sickness in about 50 percent of personnel; no deaths anticipated 
Vomiting and nausea in nearly all personnel on first day, followed by other 
symptoms of radiation sickness; about 20 percent deaths within 2 to 6 weeks 
after exposure: survivors convalescent for about 3 months 
Vomiting and nausea in all personnel on first day, followed by other symptoms of 
radiation sickness; about 50 percent deaths within 1 month; survivors convales- 
cent for about 6 months 
Vomiting and nausea in all personnel within 4 hours from exposure, followed by 
other symptoms of radiation sickness; up to 100 perant deaths; few survivors 
convalescent for about 6 months 
Vomiting and nausea in all personnel within 1 to 2 hours; probably no survivors 
from radiation sickness 
Incapacitation almost immediately; all personnel will be fatalities within I week 

Table 8-5 

RADIATION DAMAGE THRESHOLDS FOR CERTAIN CLASSES OF MATERIALS 

Electronic components 10'-10' rad 
Polymeric materials 10'-109 rad 
Lubricants, hydraulic fluids lO'-IO' rad 
Ceramic, glasses 106-108 rad 
Structural metals. alloys 109-10" rad 

a 
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Chapter 9 

Guidance, Navigation, and Control 

The main purpose of the GNC system is to: 

1. Determine the position of the vehicle. 

2. Determine the magnitude, direction, and change of vehicle velocity. 

3. Calculate and control manuveurs to reach specified position or 
rendezvous will a target satellite. 

The position and the velocity of the OTV will be determined by information 

received from the planned Global Positioning System. This system, which will be 

composed of satellites positioned in 12-hour orbits, will produce signals that can be 

used to acurately determine vehicle position and velocity (time rate of change of 

position). Onboard, autonomous GNC will be provided by a combination of stellar 

tracker and laser-gyro inertial measurement units (IMU’s). The, stellar tracker is 

an opto-electrical device that is used to obtain vehicle attitute and position data 

from precise angular measurement of selected stars. The stellar tracker onboard 

the WWSR will have three axis imaging capability and a larger star catalogue than 

the Space Shuttle providing much higher accuracy and longer on-time [6]. The 
IMU provides vehicle attitude and velocity data from internal laser gyros and 

accelerometers. This part of the GNC system will play an important role during 

the aerobraking maneuver when the stellar tracker is unuseable and reception from 

the GPS system may be hampered by ionization of the air flow around the OTV. 

The GNC system will be controlled by the general purpose computer systems. 

The computers will perform position and velocity determination from the various 

GNC sensors, will calculate needed maneuvers, and control the main engines and 

the attitude control system (ACS) to carry out the necessary changes. 

Initially the WWSR OTV will be equiped with Ku-Band Rendezvous radar. 

This radar, which will also double as a communications link, will provide automatic 
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target detection and tracking to provide the range, velocity, roll, and pitch of a 

target satellite. This system will greatly reduce target location errors by allowing 

pre-rendezvous flight corrections. The Ku-Band radar can track a satellite with an 

active transponder at a range of 400 miles and a dead satellite at a distance of 14 

miles [I]. 

Reaction Control System (RCS) 

The Attitude Control System will respond to flight software commands and 

GNC inputs via the Data Management System to control the OTV’s attitude, 

trajectory, rendezvous maneuvers. The ACS jets will use N,H, hydrazine fuel and 

will each produce a thrust of 111 Newtons at a specifc impulse of 220 seconds (51. 

There will be a total of 36 jets arranged in 8 locations to provide complete 

translational and rotational control of the OTV during rendezvous, docking, 

trajectory correction and aerobraking. Four stations, each with four thrusters, are 

located around the EVA module. A tank within the EVA module supplies the fuel 

for these four stations. The remaining four stations are attached along the rim of 

the aerobrake. These stations have five thrusters each, with some firing through 

the edge of the brake itself. Each of the stations has its own hydrazine fuel tank. 

The OTV will carry a maximum of 2900 lbs of hydrazine fuel. 
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Chapter 10 

Data Management System 

The Data Management System (DPS) will control and monitor the OTV 

during the course of each mission. Some of these functions include: 

1. Support of GNC system, including calculation and control of vehicle 
position and trajectory. 

2. Monitoring and control of vehicle subsystems including electrical power, 
environmental control, and main engines. 

3. Processing vehicle data for radio transmission and responding to uplinked 
vehicle commands. 

The DPS systems will consist of 3 onboard computers, 2 mass memory units, 

3 crew input/output stations, and the data bus network. The onboard computers 

will be IBM’s new 1750A (Air Force Standard) avionics system [l]. These high 

speed, high capacity machines were choosen because of the enormous computing 

power needed during the aerobraking maneuver. The IBM system provides the 

highest computing speed in the smallest box. The mass memory units will be 

write-once optical discs. Each of the two memory units will contain copies of the 

flight software and star catalogue for the stellar tracker and will provide memory 

for mission data storage. 

The forward flight deck will consist of three flat screen plasma displays, two 

keypads, and the numerous controls and switches that operate all of the subsystems 

of the OTV. All phases of operation of the OTV are controlled from the flight 

deck, either automatically though the computers or manually. The remaining 

display and keyboard, attached within the avionics component compartment, can be 

used as a work station off the flight deck. 

The data bus network provides a means of communication between each of 

The data buses will be high density optical the vehicles subsystems and the DMS. 
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cable to reduce weight, size, and electromagnetic interference. The 

multiplexer/demultiplexer systems will convert DMS and subsystem signals to coded 

light signals for transmission over the data bus network. The data bus and 

multiplexer systems will be tripley redundant [4]. 

I 
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Chapter 11 

Communication System 

The communication system provides direct voice and data links between the 

OTV and the space station, ground control, and EVA astronauts. The 

communications system onboard will consist of S-Band, Ku-Band, and UHF radio 

frequency links. The S-Band phase modulation system will be used to transmit 

and receive voice and data to and from the space station and ground control. The 

system can either be used in direct link mode or relayed through the Tracking 

Data Relay Satellites (TDRS). The S-Band system will be redundant (two 

independent systems) as it is the most versitle and important communications link. 

The Ku-Band system (same device as rendezvous radar) will be used to transfer 

data at rates much higher than the S-Band system. The Ku-Band system can only 

relay data through TDRS and is not operational during aerobraking (antenna will 

be stowed) or when being used as rendezvous radar. The UHF system will be 

used for voice communication between the OTV and EVA astronauts and during 

docking procedures with the space station [3]. The entire communications system 

will be interfaced with the Data Management System to control reception, 

transmition, command execution and data telemetry. 

The antennas for the S-Band and UHF radios will be flush mounted on the 

structure of the OTV. Four sets of redundant S-Band antennas, spaced at 90 

degree intervals around the EVA module, will provide complete transmission and 

reception coverage with the space station and ground control either directly or 

through TDRS. Three UHF strip antennas, one near the docking berth, one inside 

the command module, and one inside the EVA capsule, will provide 

communications with and between astronauts before and during EVA and with the 

space station during docking. In addition, small headset radios can be used inside 

the command module to allow all of the astronauts to communicate with each 

other as well as be linked into the entire comm net. 

The Ku-Band intergrated radar and communications system antenna is a 
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deployable %foot parabolic dish [l]. It will be stowed down along the side of the 

EVA module during the aerobraking maneuvers to protect it from drag forces and 

aerodynamic heating. 

87 



Chapter 12 

Satellite Repair and Recovery System 
f 

The satellite repair and recovery system is designed to satisy the objectives of 

the mission - to attempt a repair (or refueling) of a dysfunctional geostationary 

satellite and, if unsuccessful, dock with the satellite and return it to the space 

station at LEO for further servicing. This system will reduce the costs of satellite 

operation. As the cost of replacing a satellite far exceeds the cost of a repair 

mission, significant savings can be gained. These savings are evidenced by past 

repair missions [2]. 

Table 12-1: Satellite Repair Missions 

Satellite Estimated Repair 
cost Mission 

Comments 

Palapa 200 million 10 million Resold for 60 million 

Solar Max 270 million 43 million Redeployed 

The satellite recovery and repair system consists of 6 items: 

1. Manned Maneuvering Unit (MMU) - see Figure 12-1 

2. Extravehicular Mobility Unit (EMU) - see Figure 12-2 

3. Manipulator arm 

4. Grappling device 

5.  Repair Tools 

6. Docking Ring 

The above items function collectively to create an integrated system for repairing or 

recovering the satellite. The following typical mission employing the system serves 

to describe the characteristics and functions of each component. 
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Upon rendezvous of the OTV with the satellite to within 150 feet by means 

of RCS, an astronaut dons the EMU and enters the EVA module through the 

passage provided. Although the suit is heavy (approximately 300 lbs.) the zera 

gravity environment allows relatively easy manipulation of the EMU. The 

astronaut then proceeds to put on the externally mounted MMU, which is also 

stored in the EVA chamber. The escape hatch to the outside is sufficiently large 

to allow the astronaut to move away from the OTV without complication due to 

the relatively awkward MMU. 

The MMU is a self propelled backpack device for maneuvering the astronaut 

through space as a free flier. The MMU is equipped with twenty-four futed 

gaseous nitrogen thrusters each capable of delivering of delivering 1.7 lbs. of thrust 

and allowing six degree of freedom maneuverability. Additionally, the MMU is 

equipped with an automatic altitude hold which provide sufficient control to damp 

out the motion induced by the movement of the astronaut’s limbs. It is designed 

to be failsafe - fully redundant controls in electrical, electronic and propulsion 

subsystems. Electrical power is supplied by two batteries, each with an energy 

capacity of 752 watt-hours. The dimensions of the MMU are approximately 50 in. 

high, 33.3 in. wide, 27 in. deep with arms in launch position and 48 in. deep with 

arms in the extended flight position. unit fully charged with 26 lbs. 

of propellant can function for a six hour EVA and has a range of 3000 ft. A t  full 

charge, the two aluminum pressure tanks with Kevlar ovenvrap (pressurized to 

3000 psia) can induce a propulsive delta v of 66 fps to the 800 lb. combination of 

man, MMU and EMU. This device has performed flawlessly on three previous 

misssions and has proven its goal to move an astronaut easily, accurately, and 

reliably in free flight [l]. 

The 340 lb. 

The MMU configuration proceeds to the disabled satellite and matches 

angular velocity. The astronaut may 

attempt to repair the satellite by attaching the MMU to the satellite by a means 

determined by the specific satellite. Previous missions such as that to repair the 

Solar Maximum Mission Satellite used a device known as a trunion pin adapter 

(see Figure 12-3) to make this attachment. Simple operations such as replacing a 

At this point, several options are presented. 
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satellite module may be accomplished in this fashion. More likely however, the 

satellite may require more sophisticated servicing. Therefore, the astroaut will need 

to prepare the satellite for returu to the OTV by means of the manipulator a r a  

This necessitates the use of grappling device attached to the Satellite to which the 

manipulator arm may secure itself. Unfortunately, there are, presently, no 

universal grappling devices for satellite repair. An optimum solution to this 

problem would be the standardization of all future satellites (see Figure 12-4) to 

promote easy repairability. Then a universal “stinger” device such as that used to 

retrieve the Westar VI satellite (see Figure 12-5) may be connected to the satellite 

and the astronaut-MMU configuration could propel the satellite to within reach of 

the OTV’s manipulator arm. 

Without this optimum satellite standardization, however, a number of 

alternatives arise to continue the mission. Instead of using the MMU to propel the 

satellite to the OTV (which can only be accomplished reliably if the mass of the 

satellite is sufficiently low), the MMU may be used to attach a device to to the 

satellite to which the manipulator arm may attach itself. By maneuvering the 

OTV to within 15 feet of the satellite the manipulator arm may be employed to its 

greatest potential. 

The manipulator arm of Figure 12-6 may be used to grasp the satellite and 

lower it to the docking berth on the outside of the EVA module. The ability of 
the docking berth to be adapted to properly fit and securely hold the satellite is 

essential and unfortunately, subject to the same limitations of the grappling device 

described above. Once this problem has been overcome, however, the manipulator 

arm assumes another role as a “cherry picker” [5]. To this extent, the arm serves 

to maneuver an astronaut around the satellite for further satellite servicing. As 

visibility from within the OTV is limited, the manipulator arm is teleoperated by a 

camera mounted just behind the end of the grasping arm. This arm will require 

six degrees of freedom to successfully attach to the satellite and permit approach 

from various angles. 

The above components compromise the satellite repair and recovery system of 
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the WWSR orbital transfer vehicle. As there are great variations in current 

satellite design, the non- rigidity of proposed system is obvious. Modifications may 

be necessary aa dictated by the individual mission. The ability of the space station 

to stock a sufficient supply of repair and recovery system components is essential to 

the functioning of the OTV. 

The MMU is a selfcootined 
backpack for propelling UI 
astronaut during EVA. 
Twenty-four fixed gaseous 
nitrogen thrusters. each 
dclivenng 1.7 Ib of thrust, 
allow SIX d c g r m  of freedom 
maneuvering ability. .- I 

a 

Figure 12-1: The Manned-Manuevering Unit 
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Figure 12-2: The Extravehicular Mobility Unit 

Figure 12-3: Trunion Pin Attachment Device 
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Figure 12-4: Serviceable Satellite Configuration 
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Figure 12-6: Satellite Grasping Arm 
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Chapter 13 

Cost Analysis . 

0 

I 

The contract on any new type of design is inevitably determined, in part, as 

a function of its cost. Although the RFP for this project never specified a 

requirement to consider cost efficiency, the WWSR project team sought to integrate 

the most cost effective, usable components whenever possible. To this extent, many 

tried and tested devices are included in the design to avoid the comparatively large 

costs associated with research and development of stateof-the-art technology. 

Nevertheless, these costs could not be eliminated in all instances and were 

responsible for a large portion of the overall cost. The cost of the computer 

hardware and software necessary to successfully complete the complex aerobraking 

maneuver, for example, compromised nearly 13% of the overall cost of the OTV. 

However, the seemingly large expenditure on these computer systems is 

justified by the argument that the proposed aerobrake configuration will produce a 

dollar savings of over fifty percent as compared to existing orbital transfer vehicle 

concepts using all-propulsive methods of transfer between LEO and GEO. In 

approximately ten “typical” missions, this savings will compensate for the 

undeniably large research, development and systems testing costs which necessarily 
accompany the installment of any new technology. 

The approximate costs of the majority of the systems, structures, and 

components are provided on the following page. Wherever possible, the costs of 

previously used components were researched and economically scaled to determine 

the current figure. In some instances, such as the determination of the computer 

software cost and the aerobrake research and development cost, some fundamental 

concepts of engineering cost estimation and analysis were employed to determine a 

numerical figure. 

The cost breakdown on the following page does not include the cost of the 

fuel itself or the cost of transporting the OTV or the fuel which it requires to the 
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space station. In 

fact, current NASA figures indicate that the cost of transporting a mass aboard the 

shuttle to low earth orbit is approximately $1500/lb. Based on the overall ''dry". 

weight of the OTV, we can expect an additional expense of nearly $40 million 

dollars just to transport the OTV in pieces to its berth at the space station. In 

order to fully fuel the OTV for the worst possible case would require yet another 

expense of approximately $70 million. This figure is based on the contention that 

the fuel is put in orbit by a mote cost effective means than in the cargo bay of 

the space shuttle. 

One should not assume, however, that these costs are negligible. 

The results of the cost analysis are open to a variety of interpretations. The 

final cost of development of a single 0 1 V  was determined to be $850 million ($970 

million including transportation costs). In light of the fact that the modern version 

of the shuttle costs approximately $1 billion and space station cost projections 

waver around $9 billion, we can conclude that the cost of this project is, by no 

means, insignificant. Nor can any realistic cost decrement for the specified design 

parameters be expected. This is not to say that such a design project should be 

abandoned. The 3-man crew capability provides great opportunity for the repair of 

malfunctioning or dead satellites. However, some alterations of the design and/or 

mission specifications are very appropriate. To this extent, the man-rated 

functioning, coupled with the capability of the OTV to deliver and/or recover a 

30,000 lbm object from LEO and GEO impose significant weight additions to the 

mission which, consequently, boost both mission and design costs tremendously. 

Therefore, it is the recommendation of WWSR, Inc. to modify the mission 

requirements. The manned OTV will be of great value to the satellite repair 

function of the design. However, when considering the satellite deploy and recovery 

function of the design, consideration of other options such as an unmanned OMV 

may prove to be more cost effective. 
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Table 13-1 

Numerical Breakdown of Project Orion Costs 

Item Cost 
(In Millions of Dollars) 

Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .150 

Fuel Tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
6 liquid 0, 
6 liquid H, 

Avionics 
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .130 

Pratt & Whitney Engines (2) . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

Power Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 
2 United Technology Fuel Cells 
Battery 

EVA Module (with docking mechanism) . . . . . . . . . . . . . . . . . . . .  25 

Reaction Control System (RCS) . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Satellite Recovery System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
Manipulator Arm & Grappling Device 
MMU & EMU 
Berthing Device 
Tools 

Main Cabin Structure and Components . . . . . . . . . . . . . . . . . . .  .200 

Pressurization and Temperature . . . . . . . . . . . . . . . . . . . . . . . . .  45 
Control System 

Program Development and Management . . . . . . . . . . . . . . . . . . . .  75 

Research, Development, and 
System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .250 

Unaccounted Incidentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

Summation of Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1050 
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Managing Project Orion 
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This section is a brief discussion of how Project Orion should be managed. 

Managing Project Orion will be a joint effort between WWSR and NASA. WWSR 

will be responsible for establishing the contractors and subcontractors of the project 

as well as monitoring the work of these corporations. NASA in turn will monitor 

WWSR as well as manage the deployment of the OTV. In monitoring WWSR, 

NASA’s responsibilities will consist of approving the decisions, selections, and 

funding of our corporation. NASA will have the power to override decisions made 

by WWSR. WWSR’s responsibilities with respect to its contractors and 

subcontractors will be similiar to that of NASA’s. WWSR will be responsible for 

the distribution of funding from NASA to the contractors as well as approving 

major decisions and designs developed by the contrators. It is expected that the 

relationships between contractors and their subcontractors will be managed in a 

similiar fashion. 

WWSR itself is a relatively new corporation in the space market. We are, 

however, one of the oldest airframe manufacturers in the country and have enjoyed 

a very successful partnership with the government in ensuring the defense of this 

country. Fifteen years ago, WWSR went through a major restructuring to assure 

viability into the twenty-first century. It was decided then that WWSR would 

continue its work on development of civilian and military aircraft as well as devote 

a substantial amount of capital into research and development of space systems - 
an area we felt confident would provide us with many exciting and challenging 

projects. Our goal was to be prepared to make a bid on a major space contract 

in ten years. WWSR then began to merge and aquire several firms active in 

developing space systems. is now divided into six fairly automonous 

“companies” : W WSR Aircraft, Sunnex Controls, Airprop Engines, Vitel Electronics, 

WWSR Space Systems (Spacsys), WWSR Space Analysis Division (Spacad). 

WWSR Inc. 

The development of the OTV in this proposal was primarily the responsibility 

Spacad will be of Spacad with appropriate input from Spacsys, Sunnex, and Vitel. 
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the company responsible for monitoring the work on Project Orion. Spacsys will 

manufacture the crew module, EVAM, propellant tanks, and support structure. 

This will be done at our recently converted airframe facilities in California. 

will be responsible for developing and manufacturing the electronic and mechanical 

control systems for the OTV. Vitel will manufacture most of the electonic 

components needed by the other companies. Some of the systems and components 

of the OTV that will be contracted out will be the main engines, thermal controls, 

communication systems, RCS engines, and the aerobrake and thermal tiles. All 

components not directly manufactured by Spacsys will be installed at the 

company’s plant. Figure 14-1 illustrates Project Orion’s manufacturing and 

management structure. 

Sunnex, 

Once the completed system is delivered to NASA, WWSR’s responsibilities 

will be to provide replacement components for the OTV and to consult NASA 

through Spacad in mission planning. It is Spacad’s opinion that NASA should 

employ the same system of management for Project Orion that it proposes to use 

for managing the Space Station. Assuming NASA uses the management system 

proposed by Granville Paules [2], Project Orion will be a subsystem of Space 

Systems Operations. Space Systems Operations controls space system activities 

concerning the Space Station that occur in orbit or on the ground. The subsystem 

which will monitor Project Orion will consist of six divisions: User Operations 

Support, Mission Planning, Predeployment/Postdeployment Operations, Integrated 
Logistics Support, Market Research, and Cost and Financial Managment. Each of 

these divisions will consist of members from NASA, WWSR, and users. User 

Operations Support will be responsible for assisting users in planning and directing 

the allocation of the OTV. Mission Planning will create the optimal strategy for 

deployment of missions set up by User Operations. Predeployment/Post- 

deployment Operations will manage the functions of final servicing, integration, and 

processing of subsystems just before and after the OTV leaves and returns to the 

Space Station. Integrated Logistics Support will delegate the logistic requirements 

of the various users. Market Research will serve as a catalyst for developing new 

areas in which the OTV can be employed. Cost and Financial Mangament will 

promote cost-effective operations. 
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Figure 14-1: Management and Manufacturing Structure 
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Chapter 15 

Mission Planning 

The purpose of this section is to present three scenarios for possible missions 

for WWSR's OTV. The description of the missions include mission objective, OTV 

configuration and weight estimates, fuel requirements, time of various actions, and 

delta v's and fuel consumed for various manuevers. 

Mission A: Worst Case Scenario 

Mission Objectives: 
constructing a platform at GEO (payload, 24000 lbm). 
provisions for a full crew of 3 for a 14 day mission. 
anticipated for construction of the platform. 
OTV will returned unloaded to the Space Station. 

The OTV will leave the Space Station carrying components for 
The OTV will also carry 

Eight days on station will be 
Upon completion of construction, the 

Configuration: 6 pairs of propellant tanks, 2 MMUs, 3 crew. 

Weight Estimates: 

System Weight (lbm) 

ECLSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3560 
Tanks and Supporting Structure (6 pairs) . . . . . . . . . . . . . . . . . . . .  3660 
Engine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1050 
Crew Cabin, EVA, and Components . . . . . . . . . . . . . . . . . . . . . .  .13260 
Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2800 
Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  985 
EPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2215 
RCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3350 
MMU (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1280 
Crew (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 0 

Total (Dry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .32670 
Payload (Out) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .24000 
Payload (Return) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Total Propellant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125000 

Mission Profile: The mission profile for the delivery and setup of a 24,000 lbs space 
platform to geosynchronous orbit is shown in Table 15-1. Following separation 
from the Space Station and subsequent systems checkout, the OTV performs a 
phasing orbit injection burn (PIB). The phasing orbit is designed to bring the 
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OTV to the transfer orbit injection point at the proper time so it will arrive at  
the correct location in GEO. The transfer injection burn places the OTV in a 
Hohmann elIiptica1 transfer to GEO, which lasts approximately five hours. 
Following circularization at GEO, the OTV can remain on station for eight days to 
deploy (i.e. possibly construct) the space platform. 

After deployment is completed, an injection burn places the OTV in a GEO-LEO 
transfer orbit that will take it through the Earth’s atmosphere. The first 
aerobraking pass, dipping the OTV to a height of 85 kilometers above the Earth, 
lasts only five minutes and leaves the vehicle in an intermediate orbit. Based on 
the results of the first pass, correction burns take the OTV through the atmosphere 
a second time. This time the maneuver lasts about 11 minutes and places the 
OTV in an orbit that can be circularized at LEO by a small propulsive bum. Note 
that the main fuel tanks are not full to capacity and that there is still fuel in 
reserve. This indicates that the OTV could carry even heavier payloads than 
24,000 lbm. 

Table 15-1 

Profile of Mission A: GEO Delivery of 24,000 Ibm Payload 

Event Duration (hrs) AV (m/s) Prop. (lbml 

Separate 
Phase Injection 
Coast 
Transfer Burn 
Coast & Correct 
GEO Circularization 
Trim 
Deliver Payload 
Phase 
Transfer Burn 
Coast & Correct 
Aerobrake Manuever 
Coast 
Aerobrake Manuever 
LEO Circularization 
Rendezvous & Dock 

4 .O 
0.2 
3.0 
0.1 
5 .O 
0.1 
12.0 
196.0 
10.0 
0.1 
5.0 
0.1 
3.2 
0.2 
0.1 
6.0 

3 
1400 

5 
1006 
10 

1826 
5 
10 

1845 
10 
10 
5 
10 
200 
20 

- 

251 (RCS) 

315 (RCS) 

512 (RCS) 

176 (RCS) 
240 (RCS) 

44793 

25112 

34168 

- 
16155 
164 (RCS) 
164 (RCS) 
81 (RCS) 
162 (RCS) 

310 (RCS) 
1392 

Launch Mass: 181,270 lbm 
Return Mass: 33,798 lbm 
Total Elapsed Mission Time: 240 hrs 
Total H,-0, Prop. Used: 121,616 lbm (3384 lbm reserve) 
Total RCS Fuel Used: 2,375 lbm (525 Ibm reserve) 
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Mission B: Satellite Repair 

Mission Objectives: The OTV will leave the Space Station travelling to GEO 
and carrying no payload. The OTV will also carry provisions for a crew of 2 fdi 
a 6 day mission. At GEO, the crew will service two satellites. It will be 
anticipated that servicing will take one day for each satellite. Upon completing 
service of the first satellite, the OTV will make a epoch change of 30° to 
rendezvous with the second satellite. Upon completing service of the second 
satellite, the OTV will returned unloaded to the Space Station. 

Configuration: 4 pairs of propellant tanks, 2 MMUs, 2 crew. 

Weight Estimates : 

System Weight (lbm) 

ECLSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2335 
Tanks and Supporting Structure (4 pairs) . . . . . . . . . . . . . . . . . . . .  2440 
Engine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1050 
Crew Cabin, EVA, and Components . . . . . . . . . . . . . . . . . . . . . .  .13260 
Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2800 
Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 9 8 5  
EPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1615 
RCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3250 
MMU (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1280 
Crew(2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340 

Total (Dry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .29445 
Payload (Out) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Payload (Return) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Total Propellant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .88000 

Mission Profile: The profile for a mission to service two geosynchronous satellites 
is shown in Table 15-2. After the OTV is fitted with three fueled tanks, it 
separates from the space station and preforms full systems checks. The OTV then 
uses the same sequence of phase injection and transfer orbit injection burns to 
arrive at the proper location in GEO as detailed for Mission A. At GEO the RCS 
engines are used to maneuver the OTV to retrieve the first satellite. Depending on 
its configuration, the satellite may be recovered using either the robot arm or with 
the assistance of an astronaut in a Manned Maneuvering Unit (MMU). The 
satellite is berthed to the OTV where the EVA astronauts can effect repairs. The 
robot arm is particularly useful for moving an astronaut around the satellite, 
providing a mobile work platform. After repairs are completed, the satellite can be 
deployed and fully tested to assure proper operation before the OTV moves to the 
next satellite. 
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To change its placement in GEO, the OTV performs an epoch change burn which 
places the vehicle in an orbit slightly smaller (and more elliptic) than GEO. This 
brings the OTV back to GEO, the epoch change orbit’s apogee, in 21.6 hours (lcss 
than the 24 hour period of GEO. 
OTV forward by about 30° in GEO. 

By recircularizing, this effectively moves t h s  

The same procedure outlined above is used to recover and repair the second 
satellite. After completing the second round of repairs, the OTV will perform a 
transfer orbit injection burn which will take it through the Earth’s atmosphere 
twice and return it to LEO. 

Table 15-2 

Mission B Profile: GEO Servicing of Two Satellites Separated by 30° 

Prop. llbm) Event Duration (hrs) AV (m/s) 

Separate 
Phase Injection 
coast 
Transfer Burn 
Coast & Correct 
GEO Circularization 
Rendezvous 
Repair 
Unload Payload 
Epoch Change Burn 
coast 
GEO Circularization 
Rendezvous 
Repair 
Unload Payload 
Transfer Burn 
Coast & Correct 
Aerobrake Manuever 
Coast 
Aerobrake Manuever 
LEO Circularization 
Rendezvous & Dock 

4 .O 
0.2 
3.0 
0.1 
5.0 
0.1 
6.0 
24.0 
3.0 
0.1 
21.6 
0.1 
6.0 
24.0 
3.0 
0.1 
5.0 
0.1 
3.2 
0.2 
0.1 
6.0 

Launch Mass: 117,455 Ibm 
Return Mass: 28,300 lbm 
Total Elapsed Mission Time: 115 hrs 
Total H,-0, Prop. Used: 85,907 lbm 
Total RCS Fuel Used: 2,846 lbm 

3 
1400 

5 
1006 
10 

1826 
25 

5 
200 
5 

200 
25 

5 
1845 
10 
10 
5 
10 
200 
20 

- 

- 

163 (RCS) 

203 (RCS) 

331 (RCS) 

566 (RCS) 

112 (RCS) 

107 (RCS) 

513 (RCS) 

101 (RCS) 

140 (RCS) 
139 (RCS) 
69 (RCS) 
138 (RCS) 

263 (RCS) 

28925 

16216 

22063 

- 

1929 

1848 

- 

13740 

1184 

(2093 lbm reserve) 
(54 lbm reserve) 
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Mission C: 15,000 lbm Payload Up and Back 

e 

Mission Ob-jectives: This mission is used to compare the performance of WWSR’s 
OTV to that of MOVERS’. Essentially, the mission consists of carrying a paylo& 
of 15,000 lbm from the Space Station to GEO and back. This payload might be 
some sort of experiment assembly used for SDI testing. The OTV will carry a crew 
of 3 for a total mission time of 7 days. 

Configuration: 6 pairs of propellant tanks, 2 MMUs, 3 crew. 

Weight Estimates: 

Wei g ht ( Ibm 1 System 

ECLSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2500 
Tanks and Supporting Structure (6 pairs) . . . . . . . . . . . . . . . . . . . .  3660 
Engine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1050 
Crew Cabin, EVA, and Components . . . . . . . . . . . . . . . . . . . . . .  .13260 
Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2800 
Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .985 
EPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1730 
RCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3350 
MMU (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1280 
Crew (3)‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .510 

Total (Dry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .31125 
Payload (Out) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .15000 
Payload (Return) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .15000 
Total Propellant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132000 

Mission Profile: The mission profile for the delivery to GEO and return to the 
Space Station of a 15,000 Ibs payload is shown in Table 15-3. Following 
separation from the Space Station and subsequent systems checkout, the OTV 
performs a PIB. The transfer injection burn places the OTV in a Hohmann 
elliptical transfer to GEO, which lasts approximately five hours. Following 
circularization at GEO, the OTV can remain on station for five days to perform 
the necessary experiments. 

After completing the experiments, the OTV will return to the Space Station with 
the payload following similar procedures for returning to LEO as described in the 
Mission A profile. 
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Table 15-3 

Mission C Profile: 15,000 lbm Payload Up and Back 
1 

Event Duration (hrs) c.V (m/s) Prop. (lbm) 

Separate 
Phase Injection 
Coast 
Transfer Burn 
Coast & Correct 
G E 0 Circularization 
Trim 
Station Keeping 
Phase 
Transfer Burn 
Coast & Correct 
Aerobrake Manuever 
coast 
Aerobrake Manuever 
LEO Circularization 
Rendezvous & Dock 

4 .O 
0.2 
3 .O 
0.1 
5.0 
0.1 

12.0 
120.0 
10.0 
0.1 
5.0 
0.1 
3.2 
0.2 
0.1 
6.0 

3 
1400 

5 
1006 

10 
1826 

5 
10 

1845 
10 
10 
5 

10 
200 
20 

- 

247 (RCS) 

310 (RCS) 

503 (RCS) 

173 (RCS) 
345 (RCS) 

44015 

24675 

33575 

23210 
236 (RCS) 
235 (RCS) 
117 (RCS) 
233 (RCS) 

445 (RCS) 
2000 

Launch Mass: 178125 lbm 
Return Mass: 47803 Ibm 
Total Elapsed Mission Time: 168 hrs 
Total H,-0, Prop. Used: 127474 lbm (4526 lbm reserve) 
Total RCS Fuel Used: 2844 lbm (56 lbm reserve) 
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Conclusion 

WWSR has presented what it feels is the most optimal design for a chemical 

propellant, manned OTV that fulfills the previously described constraints. Even 

though this is the end of our report, we feel that much more research can be done. 

WWSR’s OTV is designed to be versatile and modular. Many more missions other 

than the ones described in this proposal may be possible with minor design or 

component changes. We especially feel confident that with a small amount of 

development, our OTV would be capable of performing missions to the Moon. 

This could include orbiting to retrieve payloads or landing on the lunar surface. 

Because of its modular design, WWSR’s OTV will truly be the orbital transfer 

vehicle for the 2lSt century. 

I 
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Appendix 1 

System and Subsystem 
Weight and Power Requirement Estimates 

The following pages are tables of our estimates for the weights and power 

These estimates were based on our worst case 

The 

requirements of various subsystems. 

scenario. 

total weights of various subsystems are as follows: 

For missions other than worst case, our weights may be lower. 

Table Al-1 

Total System Weights (Worst Case) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ECLSS 3560 lbm 
Main Fuel Tanks and Supporting 

Structure (6 pairs) . . . . . . . . . . . . . . . . . . . . . . . . . .  3660 lbm 
Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2800 lbm 
Command/EVA Module and Components . . . . . . . . . . . . . . .  12680 lbm 
Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .985 lbm 
EPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2215 lbm 
RCS 3250 lbm 
Engine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1050 lbrn 
Crew (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .510 lbm 
MMU (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1280 Ibm 

Flight Chairs (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .250 lbm 
Total (Dry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32670 lbm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Robot Arm .330 lbm 

Propellant (Total) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .1250o0 Ibm 
Total (Fueled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .157670 lbm 

Payload (Max.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24000 Ibm 
Grand Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .181670 lbm 
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Table A1-2 

Mass and Power Analysis of OTV ECLSS 

System Weight Power 
(lbm) (Watts) 

900 Air Revitalization System . . . . . . . . . . . . . . . . .  650 

. . . . . . . . . . . . . . . . . . . . . .  900 Thermal Control 880 

Crew Systems (Worst Case) 
0, (metabolic - 2.25 lbm/man-day) . . . . . . . . . .  96 
N, . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 - 
H,O (drinking - 8.0 lbm/man-day) . . . . . . . . .  336 - 
H,O (hygiene . 15.0 lbm/man-day) . . . . . . . . .  630 - 
Food (2.50 lbm/man-day) . . . . . . . . . . . . . . .  105 
Waste (1.00 lbm/man-day) . . . . . . . . . . . . . .  . 42  - 

- 

- 

Other Components 
700 Freezer and Microwave : . . . . . . . . . . . . . . .  . 6 0  

LiOH/contaminant removal cannisters . . . . . . .  220 - 
Sanitation and Hygiene . . . . . . . . . . . . . . . .  200 - 
Galley . . . . . . . . . . . . . . . . . . . . . . . . . .  150 - 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2600 Totals .3560 
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Table A1-3 

0 

1 
I 

Electrical. Avionics. and Communications 
Subsystem Weights and Power Consumption 

Subsystem Weight Power 
(lbm) (Watts) 

G N C  
GPS Receivers (2) . . . . . . . . . . . . . . . . . . . .  40 60 
Stellar Tracker . . . . . . . . . . . . . . . . . . . . . .  40 20 
IMU (2) . . . . . . . . . . . . . . . . . . . . . . . . . .  40 320 
Ku-Band Radar . . . . . . . . . . . . . . . . . . . .  NA N A  
Total GNC . . . . . . . . . . . . . . . . . . . . . . .  160 400 

DMS 
Computers (3) . . . . . . . . . . . . . . . . . . . . . .  63 300 
Mass Memory (2) . . . . . . . . . . . . . . . . . . . .  31 20 
Displays (4) . . . . . . . . . . . . . . . . . . . . . . . .  16 80 
Keyboards (3) . . . . . . . . . . . . . . . . . . . . . .  15 10 
Data Bus Network . . . . . . . . . . . . . . . . . . .  100 20 
Instrumentation . . . . . . . . . . . . . . . . . . . .  100 50 
Total DMS . . . . . . . . . . . . . . . . . . . . . . .  325 490 

Communications 
S-Band PM Radio (2) . . . . . . . . . . . . . . . . .  200 

Ku-Band Radio/Radar . . . . . . . . . . . . . . . .  260 590 

700 
UHF Radio . . . . . . . . . . . . . . . . . . . . . . . .  40 25 

Total Communications . . . . . . . . . . . . . . . .  500 1315 

EPS 
Fuel Cells (2) . . . . . . . . . . . . . . . . . . . . .  350 NA 
Ni-H battery . . . . . . . . . . . . . . . . . . . . . .  165 N A  

Total Reactants . . . . . . . . . . . . . . . . . . . .  1600 N A  
Total EPS . . . . . . . . . . . . . . . . . . . . . . .  2215 200 

EPDS (2) . . . . . . . . . . . . . . . . . . . . . . . .  100 200 

RCS 
Reaction Control System . . . . . . . . . . . . . . .  450 300 
RCS fuel . . . . . . . . . . . . . . . . . . . . . . . .  2900 NA 
Total RCS . . . . . . . . . . . . . . . . . . . . . . .  3250 300 

Grand Total . . . . . . . . . . . . . . . . . . . . . . . .  7710 2705 
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Table A1-4 

Structural Component Weight Estimate 

Structural Component Weight (lbm) 

Engine Quick Disconnect Plate 

Connectors (6 sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 
LO, Tanks (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  600 
LH, Tanks (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1500 

. . . . . . . . . . . . . . . . . . . . . . . . .  -100 
Thrust Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 

Tank Support Rings and 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 

Command Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10700 
EVA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : 1500 
Aerobrake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2800 
Hatches (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300 
Docking/Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18850 

Support Struts (6 sets) 

e 
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Appendix 2 

Orbital Mechanics 

Great emphasis was spent on determining the proper trajectory of the OTV. 

The biggest problem was to determine a successful rendezvous and intercept 

trajectory with a target satellite in geosynchronous orbit (GEO). Potential launch 

windows were investigated, but after careful analysis, it was discovered that only 

one launch window was necessary. To achieve this result, a Phase Injection Burn 

(PIB) was proposed [I]. Below is a thorough explanation of this maneuver. 

PIB is used to phase the OTV with the GEO satellite so that an 

approximation to the Hohmann transfer from LEO to GEO can be executed. 

Consider FIGURE A2-1. What is done is that the OTV's time of flight from LEO 

to GEO is first determined. Then, this value is used to ascertain the angular 

displacement of the GEO satellite from the intercept point. Thus, in order for a 

successful rendezvous to occur at GEO, the target satellite must be at an angle of 

79.2" from the line of nodes at the commencement of the OTV Hohmann transfer. 

Note that the OTV transfer can only be initiated at the line of nodes intersecting 

GEO and LEO. By the time that the OTV reaches the intercept point, the 

satellite will have traveled the 79.2 displacement. 

The main problem is that the position of the OTV (point A) and the 

position of the satellite (point B) at the beginning of LEO-GEO transfer rarely 

occurs, if at all. PIB rectifies this situation. 

What happens is that the OTV is launched into a round trip elliptical path 

from A when the satellite is found at any point on arc PC. The time of flight of 

the OTV's PIB corresponds to the time it wll take the satellite to reach point 

B. Thus, by the time the OTV returns to its original location (point A), both 

spacecraft are perfectly phased for intercept through the Hohmann transfer. 
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Figure A2-1: Trajectory Schematic 
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Under no circumstances is PIB to be executed if the satellite is on arc CB. This is 

because the corresponding PIB will take the OTV inside LEO where it will 

encounter significant drag . 

Of course, it is possible to perform a PIB if the satellite is found on the arc 

ZC. However, such a launch would mean a waste of propellent because one 

complete revolution at LEO corresponds to 22.9' of GEO displacment. In other 

words, by the time the satellite reaches C from 2, the Space Station will have 

passed point A about 3 times. Using the same argument, by the time the satellite 

reaches P from Z, the Space Station will have passed point A about two times. 

Arc PC was chosen for the delta V analysis because this displacement 

corresponds to one complete revolution on LEO. In essence, it is the optimum 

launch opportunity for PIB. PIB can also be executed for an intercept at the 

other end of the nodal line. Thus, 2 rendezvous intercept opportunities are 

guaranteed within a 24 hour period from the Space Station. 

Since LEO is inclined 28.5 relative to GEO, it was found that a 

simultaneous plane change and circularization maneuver at GEO involved the least 

delta V. Furthermore, the aerobraking maneuver was thoroughly investigated. 

Details of this maneuver are discussed in Chapter 2. 

Table A2-1 is a chart outlining the required delta V's which the OTV will 

For simplicity, the aero- need to execute for a typical mission. 

assist trajectory is not included. 

See Figure A2-2. 
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Table A2-I 

J 
I 
I 
I 

0.8893 

Summary of Delta V’s 

AV(km/s) LOCATION REASON 

1.5166 1 PIB 

1.8258 

1.8437 

0.0000 

0.4513 

TOTAL AV’s = 6.5268 km/s 

2 

3 

4 

5 

6 

Injection transfer 
from LEO to Hohmann 
transfer ellipse 

Circularization and 
plane change at  GEO 

Plane change for LEO 
return and to shorten 
perigee height for 
aerobraking 

Aerobraking at  80 km 
altitude maximum. 2 passes 
through Earth atmosphere. 
(Free velocity ’ decrement of 
2.250 km/s) 

LEO circularization 

It is important to note that the sum of t..e delta V’s at locations 1 and 2 

(2.4059 km/s) is invariant. This means that no matter what the PIB and the 

transfer injection delta V’s are, their sum will always equal 2.4059 km/s. Also note 

that the total propulsive delta V’s to GEO is approximately equal to the ones 

needed to return to LEO (aerobraking velocity increments included). 
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Appendix 3 

OTV Servicing Aboard the Space Station 

When the Space Station becomes operational sometime in the mid-l990s, there 

will be a need to service OTVs. WWSR’s OTV will reqiire some servicing during 

the time between missions. This repair and refurbishment will take place in a 

special area aboard the Space Station. This area will need to be separated from the 

main portion of the station by some distance. This does not mean the repair area 

will be free-flying, only out on a boom away from the living quarters, and scientific 

areas. 

The servicing area will mainly consist of a large hangar. This hangar will 

consist of several distinct areas. These areas will be: fuel depot, engine bay, fuel 

tank storage, cargo handling, avionics repair, heat shield repair, command module 

repair and refurbishing, and ship integration area. 

The fuel depot will consist of several large cryogenic storage tanks for the 

LH2 and L02. These fuels will be stored in insulated thermos-like tanks that will 

have to be small enough to carry up in the shuttle cargo bay. These tanks will 

have to be protected from the rays of the sun, as well as have protection from 

being punctured by meteorites. The protection from the Sun will consist of 

moveable shades that will move as the direction of the Sun changes. The 

protection of the tanks from puncture will consist of a honeycomb structure that 

will stop all but the largest meteorites. If a tank happens to get punctured by a 

large object, it will have to be jetisoned immediately so that the escaping gases do 

not create a force imbalance on the Space Station. 

The engine bay of the servicing area will be the place where spare engines for 

the OTV are stored and repaired. The OTV engines will be modularized, so they 

will only need to be snapped on and off between missions. The engines may be 

taken out after each sortie to make sure that no malfunctions happen during a 

mission. In the event that the engine cannot be repaired in space, it will have to 
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be brought down to Earth on the Space Shuttle. Part of the engine bay will 

consist of the storage empty spare fuel modules for the OTV. For the moving of 

these tanks, as well as the engines and other large portions of the OTV, the 

hangar will have a large servicing crane. This crane will be on a track that will 

run down the length of the hangar, and will have enough power to move the whole 

assembled OTV. 

The cargo handling area of the hangar will consist of a place to store the 

satellites before they are loaded on the OTV for transfer to GEO. The satellites 

may have to wait long periods of time before they can get a flight out to GEO. 

This means that the satellites are able to be checked out and serviced in this 

waiting area. The cargo area will also need a means of transferring the retrieved 

satellites from the OTV area to the satellite repair area. 

The repair area of the hangar is probably the most important. The station 

must be able to repair all but the most severe malfunctions without having to send 

portions of the OTV back to Earth. This will mean that there must be astronauts 

on the station that are knowledgeable in all areas of the OTV, and that the repair 

area will be equipped well enough for repair of all major portions of the OTV 

including: avionics, life support, reaction control engines, fuel handling, cargo 

handling, and heat shield. 

Finally, the ship integration area is where the whole OTV will be assembled. 

This area will need to be large enough to contain an entire assembled OTV. The 

integration area will need to have several cranes, as well as robot arms for the 

astronauts to stand on while putting the OTV together. This is also where the 

OTV will be stored between missions. The reason for storing the OTV inside the 

hangar is to protect it from damaging radiation, micrometeorites, and random 

debris that will be floating around the Space Station. 

The cost of this repair satation has yet to be determined because the area 

has yet to be fully designed. The current estimates are that the area will cost 

about $700 million. This does not include the cost of sending up parts on the 
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shuttle. This repair .-angar and all attached areas will take about three shuttle 

flights to lift to LEO. At current costs, this means another $300 million to the 

price for a grand total of $1.0 billion. This price is only preliminary and will n9 

doubt increase as production of the pieces moves ahead. 

I 
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